Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-22T18:29:02.316Z Has data issue: false hasContentIssue false

The observation of the lattice defect formation during hydrogenation and dehydrogenation in La(Ni,Sn)5 by in-situ positron lifetime measurement

Published online by Cambridge University Press:  01 February 2011

Kouji Sakaki
Affiliation:
kouji.sakaki@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Energy Technology Research Institute, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, +81-29-861-4711, +81-29-861-4711
Yumiko Nakamura
Affiliation:
yumiko@ni.aist.go.jp
Yasuharu Shirai
Affiliation:
shirai@mat.eng.osaka-u.ac.jp
Robert C Bowman Jr.
Affiliation:
Robert.C.Bowman-Jr@jpl.nasa.gov
Etsuo Akiba
Affiliation:
e.akiba@aist.go.jp
Get access

Abstract

To clarify the effect of Sn substitution for Ni of LaNi5 on the lattice defect formation during the hydrogenation and dehydrogenation processes, in-situ positron lifetime measurements were per-formed in LaNi4.93Sn0.27. During the hydrogenation, the mean positron lifetime, τm, monotonically increased up to 175 ps which is almost same as calculated positron lifetime for vacancy. This shows vacancy introduction by hydrogenation. The τm mean positron lifetime decreased down to 135 ps with hydrogen content during the dehydrogenation. It shows that the vacancies are removed from the lattice during the dehydrogenation. These results show that vacancies in LaNi4.93Sn0.27 are intro-duced and removed reversibly during the hydrogenation and dehydrogenation. The concentra-tions of vacancy and dislocation were 1 × 10−5 and 6 × 109 cm−2, respectively. These values are two orders lower than those in LaNi5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fischer, P., Furrer, A., Busch, G., Schlapbach, L., Helv. Phys. Acta 50(1977) 421430.Google Scholar
2. Percheron-Guegan, A., Lartigue, C., Achard, J.C., Germi, P., Tasset, F., J. Less-Common Met. 74 (1980) 112.Google Scholar
3. Thompson, P., Reilly, J.J., Corliss, L.M., Hastings, J.M., Hempelmann, R., J. Phys. F 16 (1986) 675685.Google Scholar
4. Nomura, K., Uruno, H., Ono, S., Shinozuka, H., Suda, S., J. Less-Common Met. 107 (1985) 221230.Google Scholar
5. Nakamura, Y., Akiba, E., Oguro, K., Uehara, I., J. Alloys Comp. 298 (2000) 138145.Google Scholar
6. Cerny, R., Joubert, J.-M., Latroche, M., Percheron-Guegan, A. and Yvon, K., J. Appl. Cryst., 33(2000) 9971005.Google Scholar
7. Kim, G., Lee, S., Lee, K., Chun, C., Lee, J., Acta Metall. Mater. 43 (1995) 22332240.Google Scholar
8. Yamamoto, T., Inui, H. and Yamaguchi, M., Intermetallics, 9(2001) 987991.Google Scholar
9. Shirai, Y., Araki, H., Mori, T., Nakamura, W. and Sakaki, K., J. Alloy. Comp, 330–332 (2001) 125131.Google Scholar
10. Sakaki, K., Akiba, E., Mizuno, M., Araki, H. and Shirai, Y., J. Alloys Compd., submit.Google Scholar
11. Nakamura, Y. and Akiba, E., J. Alloys Compd., 308(2000) 309318.Google Scholar
12. Nakamura, Y., Bowman, R. C. and Akiba, E., J. Alloys. Compd, 373 (2004) 183193.Google Scholar
13. Lambert, S. W., Chandra, D., Cathey, W. N., Lynch, F. E. and Bowman, R. C. Jr, J. Alloys Compd., 187 (1992) 113135.Google Scholar
14. Bowman, R. C. Jr, Luo, C. H., Ahn, C. C., Witham, C. K. and Fults, B.. J. Alloys Compd., 217 (1995) 185192.Google Scholar
15. Bowman, R. C. Jr, Lindensmith, C. A., Luo, S., Flanagan, Ted B. and Vogt, T., J. Alloys Compd, 330–332 (2002) 271275.Google Scholar
16. Kirkegaard, P., Eldrup, M., Morgensen, O. E. and Pedersen, N., Comput. Phys. Commun, 23 (1981) 307335.Google Scholar
17. Kirkegaard, P. and Eldrup, M., Comput. Phys. Commun, 3 (1972) 240255.Google Scholar
18. Kirkegaard, P. and Eldrup, M., Comput. Phys. Commun, 7 (1974) 401409.Google Scholar
19. Mizuno, M., Sakaki, K., Araki, H. and Shirai, Y., J. Alloys Compd., 356–357(2003) 186190.Google Scholar
20. Sakaki, K., Araki, H. and Shirai, Y., Materials Transactions, 43(2002) 14941497.Google Scholar
21. Sakaki, K., Yamada, T., Mizuno, M., Araki, H. and Shirai, Y., Mat Trans JIM 43(2002) 26522655.Google Scholar
22. Sakaki, K., Mizuno, M., Araki, H. and Shirai, Y., J Alloy Compd., in press.Google Scholar
23. Sakaki, K., Date, R., Mizuno, M., Araki, H. and Shirai, Y., to be published.Google Scholar
24. Brandt, W.: in Positron Annihilation, Ed. by Stewart, A. T. and Roeling, L. O., Academic Press, New York, 155182 (1967).Google Scholar
25. Bergersen, B. and Stott, M. J.: Sokid State Commun., 7, (1969) 12031205.Google Scholar
26. Connors, D. C. and West, R. N.: Phys. Lett. A30, (1969) 2425.Google Scholar
27. Doyama, M. and Hasiguti, R. R.: Crystal Lattice Defects, 4 (1973) 139163.Google Scholar
28. Park, Yong-Ki, Waber, J. T., Meshii, M., Snead, C. L. Jr and Park, C. G.: Phys. Rev. B. 34 (1986) p.823836.Google Scholar
29. Siegel, R. W.: in Positron Annihilation, Ed. by Coleman, P. G., Sharma, S. C. and Diana, L. M. (North-Holland, Amsterdam, 1982) p.351368.Google Scholar
30. Siegel, R. W.: in Positron Annihilation, Ed. by Coleman, P.G., Sharma, S.C. and Diana, L.M. (North-Holland, Amsterdam, 1982) p.369380.Google Scholar