Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-13T10:34:06.875Z Has data issue: false hasContentIssue false

Novel vapor phase method for making ultra thin conformal films of polytetrafluoroethylene (PTFE)

Published online by Cambridge University Press:  01 February 2011

Sushant Gupta
Affiliation:
sushant3@ufl.edu, University of Florida, Materials Science & Engineering, 100 Rhines Hall, Dr. Singh Group, Gainesville, FL, 32611, United States, (352)846-2496
Arul Arjunan Chakkaravarthi
Affiliation:
arul@sinmat.com, University of Florida, Materials Science & Engineering, 100 Rhines Hall, Gainesville, FL, 32611, United States
Rajiv Singh
Affiliation:
rsing@mse.ufl.edu, University of Florida, Materials Science & Engineering, 100 Rhines Hall, Gainesville, FL, 32611, United States
Jeff Opalko
Affiliation:
opalko@sinmat.com, Sinmat Inc., 2153 Hawthorne Road,, Suite 129 (Box 2), Gainesville, FL, 32641, United States
Deepika Singh
Affiliation:
singh@sinmat.com, Sinmat Inc., 2153 Hawthorne Road,, Suite 129 (Box 2),, Gainesville, FL, 32641, United States
Get access

Abstract

Ultra-thin conformal polytetrafluoroethylene (PTFE) films were prepared by a novel physical vapor technique i.e., pulsed electron deposition (PED) technique. Prepared PTFE or Teflon thin films show high degree of conformity on patterned substrates. Under optimized deposition conditions the films exhibit superhydrophobicity. The PED processed films were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs and the surface morphology and the conformal nature of the films were studied. The chemical nature and hydrophobicity were studied by FTIR and contact angle measurements, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gau, H., Herminghaus, S., Lenz, P. and Lipowsky, R., Science, 283, 4649 (1999).Google Scholar
[2] Gu, H. U. Zhong-Ze, Takahashi, Kazuyuki, Nakajima, Rie, Onishi, Hiroshi, Fujishima, Akira, Sato, Osamu,, Angewandte Chemie International Edition, 42, 894897 (2003).Google Scholar
[3] Shiu, J.-Y., Kuo, C.-W., Chen, P. and Mou, C.-Y., Chem. Mater., 16, 561564 (2004).Google Scholar
[4] Smausz, T., Hopp, B., la, and Kresz, N., Journal of Physics D: Applied Physics, 35, 1863 (2002).Google Scholar
[5] Daoud, W. A., Xin, J. H., Zhang, Y. H. and Mak, C. L., Thin Solid Films, 515, 837 (2006).Google Scholar
[6] Youngblood, J. P. and McCarthy, T. J., Macromolecules, 32, 68006806 (1999).Google Scholar
[7] Satyaprasad, A., Jain, V. and Nema, S. K., Applied Surface Science, 253, 5466 (2007).Google Scholar
[8] Karlsson, J. O. and Gatenholm, P., Macromolecules, 32, 75347598 (1999).Google Scholar
[9] Shirtcliffe, N. J., McHale, G., Newton, M. I. and Perry, C. C., Langmuir, 19, 56265631 (2003).Google Scholar
[10] Tadanaga, K., Katata, N. and Minami, T., Journal of the American Ceramic Society, 80, 10401042 (1997).Google Scholar
[11] Kovaleski, S. D., Gilgenbach, R. M., Ang, L. K., Lau, Y. Y. and Lash, J. S., Applied Surface Science, 127–129, 952 (1998).Google Scholar
[12] Kovaleski, S. D., Gilgenbach, R. M., Ang, L. K. and Lau, Y. Y., Applied Physics Letters, 73, 2578 (1998).Google Scholar
[13] Hobel, M., Geerk, J., Linker, G. and Schultheiss, C., Applied Physics Letters, 56, 975 (1990).Google Scholar
[14] Choudhary, R. J., Ogale, S. B., Shinde, S. R., Kulkarni, V. N., Venkatesan, T., Harshavardhan, K. S., Strikovski, M. and Hannoyer, B., Applied Physics Letters, 84, 1485 (2004).Google Scholar
[15] Strikovski, M. and Harshavardhan, K. S., Applied Physics Letters, 82, 855 (2003).Google Scholar