Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T18:45:41.119Z Has data issue: false hasContentIssue false

Mechanical Behavior of Ternary and Quaternary Rual Alloys

Published online by Cambridge University Press:  11 February 2011

T. K. Nandy
Affiliation:
University of Michigan, Materials Science and Engineering, Ann Arbor, MI 48109, USA.
Q. Feng
Affiliation:
University of Michigan, Materials Science and Engineering, Ann Arbor, MI 48109, USA.
D. Banerjee
Affiliation:
Defense Metallurgical Research Lab., Hyderabad 500058, India.
M. F. X. Gigliotti
Affiliation:
General Electric Company, Corporate Research and Development, Schenectady, NY 12301, USA.
T. M. Pollock
Affiliation:
University of Michigan, Materials Science and Engineering, Ann Arbor, MI 48109, USA.
Get access

Abstract

The mechanical behavior of RuAl-base intermetallic alloys with alloying additions of boron, niobium and platinum has been investigated. Compression tests have been performed at room temperature and 973 K. While the addition of alloying elements results in solid solution strengthening, the strain-rate sensitivity and the activation volumes do not show a significant variation, thereby suggesting that the macroscopic flow mechanisms are not strongly affected. Deformation substructure analysis of the niobium-containing alloy shows the presence of <100> and <110> dislocations, while the platinum-containing alloy additionally contains a significant density of <111> dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fleischer, R. L. and Zabala, R. J., Metall. Trans., 21A, 2709 (1990).Google Scholar
2. Fleischer, R.L., Briant, C. L. and Field, R. D., Mat. Res. Soc. Symp. Proc., Vol. 213, p. 463 (1991).Google Scholar
3. Fleischer, R. L., ISIJ, 31, 1186(1991).Google Scholar
4. Fleischer, R. L., Field, R. D. and Briant, C. L., Metall. Trans., 22A, 463(1991).Google Scholar
5. Fleischer, R. L., Acta Metall. Mater., 41, 863(1993).Google Scholar
6. Fleischer, R. L., Acta Metall. Mater., 41, 1197(1993).Google Scholar
7. Fleischer, R. L., Metall. Trans., 24A, 227(1993).Google Scholar
8. Wolff, I. M. and Sauthoff, G., Acta Mater., 45, 2949(1997).Google Scholar
9. Eow, K., Lu, D. and Pollock, T. M., Scripta Mat., 38, 1065 (1998).Google Scholar
10. Lu, D.C. and Pollock, T. M., Acta Mater., 47, 1035(1999).Google Scholar
11. Pollock, T. M., Liu, D. C., Shi, X. and Eow, K., Mat. Sci. Eng., A317, 241(2001).Google Scholar
12. Lu, D. C., Ph.D. Thesis, Carnegie Institute of Technology, Carnegie Mellon, USA, 2000.Google Scholar
13. Baker, I. and Munroe, P. R., High Temperature Aluminides and Intermetallics (eds: Whang, S. H., Liu, C. T., Pope, D. P., Stiegler, J. O.) The Minerals Metals and Materials Society 1990: p. 425.Google Scholar
14. Baker, I., Mater Sci Eng, A192, 1(1995).Google Scholar
15. Nandy, T.K., Feng, Q. and Pollock, T. M., To be published.Google Scholar