Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T00:43:57.833Z Has data issue: false hasContentIssue false

Low Temperature Routes to Cordierite-Like Ceramics using Chemical Processing

Published online by Cambridge University Press:  25 February 2011

Zhi-Fan Zhang
Affiliation:
Departments of Materials Science and Engineering, and Chemistry, University of Michigan, Ann Arbor, MI 48109-2136
Martin L. Hoppe
Affiliation:
Departments of Materials Science and Engineering, and Chemistry, University of Michigan, Ann Arbor, MI 48109-2136
Jeffrey A. Rahn
Affiliation:
Dept. of Chemistry, Eastern Washington State University, Cheney, WA
Sang-Man Koo
Affiliation:
Departments of Materials Science and Engineering, and Chemistry, University of Michigan, Ann Arbor, MI 48109-2136
Get access

Abstract

The reaction of SiO2 with basic magnesium compounds, in the presence of excess ethylene glycol, provides access to the hexacoordinate silicate complex, MgSi(OCH2CH2O)3. Alkali metal hydroxides provide access to pentacoordinate silicates of the type M2Si2(OCH2CH2O)5, where M = Li, Na, K, and Cs. Alumina also reacts with alkali metal hydroxides and ethylene glycol to give compounds of the type MAI(OCH2CH2O)2. HCl neutralization of the alkali metal silicates and aluminates provides the neutral metal glycolates of Si and Al. Stoichiometrically correct mixtures of these complexes form homogeneous, cordierite precursor solutions that are potentially useful for forming films, fibers and membranes of cordierite. These polymer-like materials can be heated directly in air to generate first α-cordierite and then µ-cordierite. Hydrolysis and condensation reactions, which occur in sol-gel processing, are not required. The phase transformations and chemical changes that occur during pyrolytic transformation of the preceramic materials to their target ceramic products were characterized. Methods developed during the course of these studies led to the development of heating schedules wherein well crystallized g.-cordierite could be formed at 850 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laine, R. M. in Sol-Gel Processine of Glasses, SPIE Proc. vol 1328, Mackenzie, J. D., Ulrich, D. R., eds., (1990) p16 and references therein.Google Scholar
2. Livage, J., Henry, M. and Sanchez, C., Prog. Solid State Chem. (1988) 18, 259341.Google Scholar
3. Selvaraj, U., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. (1990) 73, 36633669.Google Scholar
4. Lim, B. C. and Jang, H. M., J. Mater. Res. (1991) 6, 24272433 and references therein.Google Scholar
5. Ismail, M. G. M. U., Tsunatori, H., and Nakai, Z., J. Am. Ceram. Soc. (1990) 73, 537543.CrossRefGoogle Scholar
6. Zelinski, B. J. J., Fabes, B. D., and Uhlmann, D. R., J. Non-cryst. Solids (1986) 82, 307313.Google Scholar
7. Babonneau, F., Coury, L., and Livage, J., J. Non-cryst. Solids (1990) 121,153157.Google Scholar
8. Bickmore, C., Hoppe, M. L., and Laine, R. M., preceding paper.Google Scholar
9. Blohowiak, K. Y., Laine, R. M., Robinson, T. R., Hoppe, M. L., Nardi, P., Kampf, J., and Uhm, J., Nature (1991) 353, 642644.Google Scholar
10. Bickmore, C. R., Hoppe, M. L., Laine, R. M., Youngdahl, K. A., Nardi, P., Robinson, T. R. and Uhm, J.. 5th International Conference on Ultrastructure Processing, Hench, L. L., West, J. K. and Ulrich, D. R. eds., J. Wiley, 1991, in press.Google Scholar
11. Laine, R. M., Youngdahl, K. A., U. S. Patent Application, allowed 1991 Google Scholar
12. Hoppe, M. L., Burggraf, L. W., Gordon, M. S., Laine, R. M., Kampf, J., Davis, L. P. and Nardi, P., to be submitted to J. Am. Chem. Soc.Google Scholar
13. Hoppe, M. L., Furlong, M., Sellinger, A. and Laine, R. M. unpublished results.Google Scholar
14. Cruickshank, M. C. and Glasser, L. S. D., J. C. S. Chem. Comm. (1985) 84–85.Google Scholar
15. Cruickshank, M. C., Glasser, L. S. D., Barri, S. A. I., and Poplett, I. J. F., J. C. S. Chem. Comm. (1986) 23–24.Google Scholar
16. Messier, D. R., Ceram. Bull. (1989) 68, 1931.Google Scholar
17. Messier, D. R. and Broz, A., J. Am. Ceram. Soc. (1982) 65, C123.Google Scholar