Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T11:52:58.786Z Has data issue: false hasContentIssue false

Light Intensity Exponents as Sensitive Tools for the Detection of Impurities in a-Si:H

Published online by Cambridge University Press:  17 March 2011

L. F. Fonseca
Affiliation:
Department of Physics, University of Puerto Rico, San Juan 00931, PR Instituta de Engenharia (INESC), Rua Alves Redol 9, 1000 Lisbon, Portugal
S.Z. Weisz
Affiliation:
Department of Physics, University of Puerto Rico, San Juan 00931, PR Instituta de Engenharia (INESC), Rua Alves Redol 9, 1000 Lisbon, Portugal
P. Alpuim
Affiliation:
Department of Physics, University of Puerto Rico, San Juan 00931, PR Instituta de Engenharia (INESC), Rua Alves Redol 9, 1000 Lisbon, Portugal
V. Chu
Affiliation:
Department of Physics, University of Puerto Rico, San Juan 00931, PR Instituta de Engenharia (INESC), Rua Alves Redol 9, 1000 Lisbon, Portugal
J.P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Technico, 1048-001 Lisbon, Portugal
R. Naides
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
I. Balberg
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
Get access

Abstract

We have shown recently that the temperature dependence of the phototransport properties can yield information regarding the state distribution in the forbidden gap of semiconductors. Of these properties the light intensity exponents of both, the majority carriers, γe, and the minority carriers, γh, were found to be very sensitive to the details of this distribution. In particular, noting that sub 1/2 values of the exponents are very unusual we have studied their origin in some a-Si:H materials. Finding experimentally such sub 1/2 values of γh and running computer simulations of the recombination processes in a-Si:H led us to the conclusion that these low values are due to acceptor-like centers which have a relatively high capture coefficient for the holes. We attribute these centers to the unintentional oxygen doping in a-Si:H. We will show that the oxygen presence, usually ignored in the discussions of the phototransport properties of a-Si:H, appears to be, in many cases, the dominant factor in the properties of “intrinsic” a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paesler, M.A., Anderson, D.A., Freeman, E.C., Moddel, G. and Paul, W., Phys. Rev. Lett. 41, 1492 (1978).Google Scholar
2.See as an example of many works, Winer, K., J. Vac. Sci. Technol. B, 7, 1226 (1989).Google Scholar
3. Aoucher, M., Mohammed-Brahim, T. and Fortin, B., J. Appl. Phys. 79, 7041 (1996).Google Scholar
4. McMahon, T.J. and Crandall, R.S., Phys. Rev. B 39, 1766 (1989).Google Scholar
5. Vanier, P.E., Delahoy, A.E., Griffith, R.W., Tetrahedrally Bonded Amorphous Semiconductors, Street, R.A., Biegelsen, D.K. and Knights, J.C. eds., AIP Conf. Proc. 73, 227 (1981).Google Scholar
6. Rose, A., Concepts in Photoconductivity and Allied Problems (Interscience, NY, 1963).Google Scholar
7. Bube, R.H., Photoelectronic properties of Semiconductors (Cambridge University Press, Cambridge, 1992).Google Scholar
8. Orton, J.W. and Blood, P., The Electrical Characteristics of Semiconductors: Measurements of Minority Carrier Properties (Academic, London, 1990).Google Scholar
9.For a review see Balberg, I., Mater. Res. Soc. Symp. Proc. 258, 693 (1992).Google Scholar
10.See for example, Vailliant, F. and Jousse, D., Phys. Rev. B 34, 4088 (1986).Google Scholar
11.See for example, Mendoza, D. and Pickin, W., Phys. Rev. B 40, 3914 (1987).Google Scholar
12. Wang, F. and Schwarz, R., Phys. Rev. B 52, 14586 (1995).Google Scholar
13. Balberg, I., J. Appl. Phys. 75, 914 (1994).Google Scholar
14. Vanier, P.E., Delahoy, A.E. and Griffith, R.W., J. Appl. Phys. 52, 5235, (1981).Google Scholar
15.See for example, Vaillant, F., Jousse, D. and Bruyere, J-C., J. Non Cryst. Solids, 97 & 98, 639 (1987), and, P. Stradins, M.Q. Tran and H. Fritzsche, ibid 164-166, 175 (1993).Google Scholar
16. McMahon, T.J. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987).Google Scholar
17. Mohring, H.-D., Abel, C.-D., Bruggemann, R. and Bauer, G.H., J. Non Cryst. Solids, 137&138, 847 (1991).Google Scholar
18. Lubianiker, Y., Balberg, I. and Fonseca, L., Phys. Rev. B 55, R15997 (1997).Google Scholar
19. Rapaport, R., Lubianiker, Y., Balberg, I. and Fonseca, L.., Appl. Phys. Lett. 72, 103 (1998).Google Scholar
20.See for example, Smail, T. and Mohammed-Brahim, T., Phil. Mag. B 64, 675 (1991).Google Scholar
21. Tran, M. Q., Phil. Mag. B 72, 35 (1995).Google Scholar
22. Bruggemann, R., Photoconductive Properties in Future Directions in Thin Film Science and Technology, Proc. 9th ISCAP (World, Scientific, Singapore, 1994), p. 80.Google Scholar
23. Fonseca, L., Weisz, S.Z., Rapaport, R. and Balberg, I. Mater. Res. Soc. Symp. Proc. 577, (1999), in press.Google Scholar
24. Alpuim, R., Chu, V. and Conde, J.P., J.Appl. Phys. 86, 3812 (1999).Google Scholar
25. Krol, U., Meier, J., Keppner, H., Littlewood, S.D., Kelly, I. E., Giannoules, P. and Shah, A., Mater. Res. Soc. Symp. Proc. 377, 39 (1995).Google Scholar
26. Lubianiker, Y., Rapaport, R., Balberg, I., Fonseca, L. and Weisz, S.Z., Mater. Res. Soc. Symp. Proc. 507, 273 (1998).Google Scholar
27. Lubianiker, Y. and Balberg, I., Phys. Rev. Lett. 78, 2433 (1997).Google Scholar
28. Ukah, C.I., Perz, J.M., Kruzelecky, R.V., Zukotynski, S., J. Non Cryst. Solids, 107, 301 (1989).Google Scholar