Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T13:16:19.593Z Has data issue: false hasContentIssue false

Large Area Electronics for Flat Panel Imagers Progress and Challenges

Published online by Cambridge University Press:  01 February 2011

J.P. Lu
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
K. Van Schuylenbergh
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
J. Ho
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
Y. Wang
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
J. B. Boyce
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
R. A. Street
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
Get access

Abstract

The technology of large area electronics has made significant progress in recent years because of the fast maturing excimer laser annealing process. The new thin film transistors based on laser processed poly silicon provide unprecedented performance over the traditional thin film transistors using amorphous silicon. They open up the possibility of building flat panel displays and imagers with higher integration and performance. In this paper, we will review the progress of poly-Si thin film transistor technology with emphasis on imager applications. We also discuss the challenges of future improvement of flat panel imagers based on this technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Street, R. A., Apte, R. B., Ready, S. E., Weisfield, R. L. and Nylen, P., Mat. Res. Soc. Proc., 487, 399 (1998).Google Scholar
2. Weisfield, R. L. and Bennett, N. R., Proceedings of SPIE 4320, 209 (2001).Google Scholar
3. Blake, J. G., King, M. C., Stevens, J. D. III, Young, R., Solid State Techn., 40 (5), 151 (1997).Google Scholar
4.See, e.g., Brotherton, S. D., Semicond. Science Techn., 10, 721 (1995). and J. B. Boyce and P. Mei, in Technology and Applications of Amorphous Silicon, Springer Series in Materials Science, 37 (Springer-Verlag, Berlin, 2000), pp. 94-146, and the references contained therein to the original works.Google Scholar
5. Fulks, R. T., Boyce, J. B., Ho, J., Davis, G. A., and Aebi, V., MRS Symp. Proc., Vol 557 (1999).Google Scholar
6. Mei, P., Boyce, J. B.,Hack, M., Lujan, R., Johnson, R. I., Anderson, G.B., Fork, D.K., Ready, S.E., Applied Physics Letters, 64, 1132 (1994).10.1063/1.110829Google Scholar
7. Boyce, J. B., Mei, P., Fork, D. K., Anderson, G. B., and Johnson, R. I., Mat. Res. Soc. Proc. 403, 305 (1996).Google Scholar
8. Boyce, J. B., Mei, P., Fulks, R. T., and Ho, J., Phys. Stat. Sol. (a) 166, p729 (1998).10.1002/(SICI)1521-396X(199804)166:2<729::AID-PSSA729>3.0.CO;2-13.0.CO;2-1>Google Scholar
9. Rahn, J. T., Lemmi, F., Lu, J.P., Mei, P., Street, R. A., Ready, S. E., Ho, J., Apte, R., Schuylenbergh, K. van, Lau, R., Weisfield, R., Lujan, R., and Boyce, J. B., SPIE Proc. of Medical Applications of Penetrating Radiation (1999).Google Scholar
10. Brotherton, S.D., Ayres, J.R., Fisher, C.A., Glaister, C., Gowers, J.P., McCulloch, D.J., Trainon, M.J., Proc. of 4th Sym. On TFT technologies, 25 (1998)Google Scholar
11. Fulks, R.T., Ho, J., and Boyce, J.B., IEEE Elec. Dev. Lett. 22, 86 (2001).Google Scholar
12. Mulato, M., Lu, J. P., and Street, R. A., J. Appl. Phys. 89, 638 (2001).Google Scholar
13. Matsuura, N., Zhao, W., Huang, Z., and Rowlands, J. A., Med. Phys. 26, 672 (1999).10.1118/1.598572Google Scholar
14. Chang, Z.Y., Sansen, W.M.C., “Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies, Kluwer Academic Publishers (1991).Google Scholar
15. Dimitriadis, C. A., Brini, J., Lee, J. I., Farmakis, F. V., and Kamarinos, G., J. of Appl. Phys. 85, 3934 (1999).10.1063/1.369770Google Scholar