Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-11T21:53:36.407Z Has data issue: false hasContentIssue false

Kinetics of Metallic Glass Formation by Solid State Reactions

Published online by Cambridge University Press:  26 February 2011

K. Samwer
Affiliation:
I. Physikalisches Institut, Universität Göttingen D-3400 Göttingen FRG
H Schröder
Affiliation:
I. Physikalisches Institut, Universität Göttingen D-3400 Göttingen FRG
M. Moske
Affiliation:
I. Physikalisches Institut, Universität Göttingen D-3400 Göttingen FRG
Get access

Abstract

Metallic glass formation by solid state reactions has been observed in multilayer Zr-Co diffusion couples. The kinetics of the reaction are limited by the diffusion of the Co-atoms in the growing amorphous layer, at least for longer times, as shown by cross-sectional transmission electron microscopy and resistance measurements. The latter one provides the interdiffusion constant and the activation energy of about 1.1 eV. Deposition of the crystalline layers at 77 K results in an enhanced amorphization process in the first stage of the reaction and gives preliminary answers about the nucleation of the amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzmon, M., Unruh, K., and Johnson, W. L. (1985). J. Appl. Phys. 58, 3865.Google Scholar
Cheng, Y. T., Johnson, W. L., and Nicolet, M. A. (1985). Appl. Phys. Lett. 47, 800.Google Scholar
Clemens, B. M., Johnson, W. L., and Schwarz, R. B. (1984). J. Non-Cryst. Solids 61 & 62, 817.Google Scholar
Fischer, B., Moske, M., and Minnigerode, G. v. (1983). Z. Phys. B 51,327.Google Scholar
Köster, U. and Blank-Bewersdorff, M. (1986). This symposium.Google Scholar
Samwer, K. (1986). NATO ASI on “Amorphous and disordered hydrides”, to be published.Google Scholar
Saris, F. (1986). Mat. Res. Soc. Symp. Proc. 54.Google Scholar
Saunders, N. and Miodownik, A. P. (1986). J. Mat. Res. 1, 38.Google Scholar
Schröder, H., Samwer, K., and Koster, U. (1985). Phys. Rev. Lett. 54, 197.Google Scholar
Schwarz, R. B. and Johnson, W. L. (1983). Phys. Rev. Lett. 51, 415.CrossRefGoogle Scholar
Unruh, K. M., Meng, W. J., Johnson, W. L., Thakoor, A. P., and Khanna, S. K. (1985). Mat. Res. Soc. Symp. Proc. 37, 551.Google Scholar
Van Rossum, M., Nicolet, M. A., and Johnson, W. L. (1984). Phys. Rev. B29, 5498.Google Scholar
Yeh, X. L. and Johnson, W. L. (1985). Caltech report 10870–157, August.Google Scholar
Yeh, X. L., Samwer, K., and Johnson, W. L. (1983). AppI. Phys. Lett. 42, 242.Google Scholar