Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T06:09:40.205Z Has data issue: false hasContentIssue false

The Inverted Meyer-Neldel Rule in the Conductance of Nanostructured Silicon Field-Effect Devices

Published online by Cambridge University Press:  09 August 2011

R.E.I. Schropp
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands
H. Meiling
Affiliation:
Debye Institute, Utrecht University, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

Thin film transistors (TFTs) offer the possibility to study the electronic transport properties of an intrinsic semiconductor as a function of the Fermi level position without the introduction of dopants and/or doping related defects. Recently, we reported on the first TFTs incorporating nanostructured silicon deposited with the Hot-Wire Chemical Vapor Deposition technique. These structures offer significant advantages over conventional plasma-deposited amorphous silicon TFTs. First of all, the HW deposited nanocrystalline silicon (nc-Si:H) TFTs do not show any threshold voltage shift upon prolonged gate voltage stress. Therefore, it is now possible to study the transport characteristics at a relatively large gate voltage in a controlled fashion, unhampered by any drift of the characteristics due to the creation of metastable electronic defect states and/or charge trapping. Second, the result of the field effect is that the Fermi energy moves into the conduction band of the virtually defect-free nanocrystalline domains in the channel region of the TFT. As the effective mobility gap of the surrounding amorphous phase is higher than that of the silicon crystallites, the Fermi energy is driven deep into the band-tail distribution of the amorphous phase, a situation that could never be achieved in purely amorphous silicon TFTs nor by heavily doping an amorphous semiconductor. Thus, the nanostructured nature of the silicon thin film near the gate insulator allows to shift the Fermi level far into the tail states region of the amorphous phase. This situation reveals for the first time the inverted Meyer-Neldel relationship in an intrinsic semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, W. and Neldel, H., Z. Tech. Phys. 18, 588 (1937).Google Scholar
2. Jackson, W. B., Phys. Rev. B 38, 3595 (1988).Google Scholar
3. Overhof, H. and Beyer, W., Philos. Mag. B 47, 377 (1983).Google Scholar
4. Yoon, B.-G. and Lee, C., Appl. Phys. Lett. 51, 1248 (1987).Google Scholar
5. Wang, X., Bar-Yam, Y., Adler, D., and Joannopoulos, J. D., Phys. Rev. B 38, 1601 (1988).Google Scholar
6. Lucovsky, G. and Overhof, H., J. Non-Cryst. Solids 164–166, 973 (1993).Google Scholar
7. Rubino, A., Addonizio, M. L., Conte, G., Nobile, G., Terzini, E. and Madan, A., in Amorphous Silicon Technology - 1993, edited by Schiff, E. A., Thompson, M. J., Madan, A., Tanaka, K., and LeComber, P. G. (Mater. Res. Soc. Proc. 297, Pittsburgh, PA, 1993), p. 509.Google Scholar
8. Brüggemann, R., Rojahn, M. and Rösch, M., Phys. Stat. Sol. 166, R11 (1998).Google Scholar
9. Schumacher, R., Thomas, P., Weber, K., Fuhs, W., Djamdji, F., Comber, P. G. Le and Schropp, R. E. I., Philos. Mag. B 58, 389 (1988).Google Scholar
10. Kondo, M., Chida, Y. and Matsuda, A., J. Non-Cryst. Solids 198–200, 178 (1996).Google Scholar
11. Meiling, H. and Schropp, R. E. I., Appl. Phys. Lett. 70, 2681 (1997).Google Scholar
12. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
13. Matsumura, H., Appl. Phys. Lett. 51,804 (1987).Google Scholar
14. Rath, J. K., Tichelaar, F. D., Meiling, H. and Schropp, R. E. I., in Amorphous and Microcrystalline Silicon Technology - 1998, edited by Schropp, R., Branz, H., Wagner, S., Hack, M., and Shimizu, I. (Mater. Res. Soc. Proc. 507, Pittsburgh, to be published).Google Scholar
15. Brockhoff, A. M., Ullersma, E. H. C., Meiling, H., Habraken, F. H. P. M., and Weg, W. F. van der (unpublished).Google Scholar
16. Berkel, C. van, in Amorphous and Microcrystalline Semiconductor Devices Vol. II: Materials and Device Physics, edited by Kanicki, J. (Artech House, Boston, London, 1992), p. 397; and references therein.Google Scholar
17. Meiling, H., Brockhoff, A. M., Rath, J. K. and Schropp, R. E. I., in Amorphous and Microcrystalline Silicon Technology 1998, edited by Schropp, R., Branz, H., Wagner, S., Hack, M., and Shimizu, I. (Materials Research Society, Pittsburgh, to be published).Google Scholar