Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:21:31.047Z Has data issue: false hasContentIssue false

Interaction of Periodically Arranged Point Defects in a Two Dimensional Photonic Crystal -The Photonic Analogue to a Doped Semiconductor

Published online by Cambridge University Press:  01 February 2011

S. Richter
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
S. L. Schweizer
Affiliation:
Universtät Paderborn, Warburgerstr. 100, D-33098, Paderborn
R. Hillebrand
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
C. Jamois
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
R. B. Wehrspohn
Affiliation:
Universtät Paderborn, Warburgerstr. 100, D-33098, Paderborn
M. Zacharias
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
U. Goesele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
Get access

Abstract

We present and characterize hexagonal point defects in a two dimensional photonic crystal based on macroporous silicon. These point defects are prepatterned periodically, forming a superstructure within the photonic crystal after electrochemical etching. Spatially resolved, optical investigations related to morphological properties, like defect concentration and pore radius, are compared to bandstructure calculations. The confined defect states are identified and their interaction is evaluated quantitatively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] John, S.. Phys. Rev. Lett., 58:24862489, 1987.Google Scholar
[2] Joannopoulos, J.D., Meade, R.D., and Winn, J.N.. Photonic crystals: Molding the flow of light. Princeton University Press, 1995.Google Scholar
[3] Yariv, A., Xu, Y., Lee, R. K., and Scherer, A.. Opt. Lett., 24:711713, 1999.Google Scholar
[4] Bayindir, M., Temelkuran, B., and Ozbay, E.. Phys. Rev. B, 61:11855, 2000.Google Scholar
[5] Olivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdre, R., and Oesterle, U.. Opt. Lett., 26:10191021, 2001.Google Scholar
[6] Gruening, U., Lehmann, V., Ottow, S., and Busch, K.. Appl. Phys. Lett., 68:747, 1996.Google Scholar
[7] Birner, A., Gruening, U., Ottow, S., Schneider, A., Mueller, F., Lehmann, V., Foell, H., and Goesele, U.. Phys. Stat. Sol. (a), 165:111, 1998.Google Scholar
[8] Schilling, J., Birner, A., Mueller, F., Wehrspohn, R. B., Hillebrand, R., Goesele, U., Busch, K., John, S., Leonard, S. W., and van Driel., H. M. Opt. Mater., 17:710, 2001.Google Scholar
[9] Lehmann, V. and Foell, H.. J. Electrochem. Soc., 137:653, 1990.Google Scholar
[10] Lehmann, V.. J. Electrochem. Soc., 140:2836, 1993.Google Scholar
[11] Bayindir, M., Temelkuran, B., and Ozbay, E.. Phys. Rev. B, 84:2140, 2000.Google Scholar
[12] Lidorikis, E., Sigalas, M. M., Economou, E. N., and Soukoulis, C. M.. Phys. Rev. Lett., 81:1405, 1998.Google Scholar