Published online by Cambridge University Press: 10 February 2011
The electrical properties and the hot-carrier reliability of P+ poly-gate P-MOSFET's are investigated for advanced 0.35 μπι LDD CMOS technologies. It is shown that surface-channel p-devices with an optimized plasma NH3 nitrided gate-oxide have good barrier properties and electrical performances which lead to a higher hot-carrier immunity in 8nm thick nitrided gate-oxides than in pure oxides using DC and AC experiments. The AC stressing shows that reducing the gate-oxide thickness leads to a larger influence of electron detrapping inducing a stronger influence of donor type interface traps than the usual build-up of negative charges. These distinct degradation mechanisms are less significant in nitrided oxide p-MOSFET's due to the lower lateral electric field leading to a lower amount of trapped charges which are quickly suppressed during subsequent detrapping phases leaving the main influence of the interface traps.