Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T21:53:38.303Z Has data issue: false hasContentIssue false

Glancing Angle Deposited Platinum Nanorod Arrays for Oxygen Reduction Reaction

Published online by Cambridge University Press:  08 March 2011

Wisam J. Khudhayer
Affiliation:
Department of Applied Science, Engineering Science and Systems, University of Arkansas at Little Rock, AR, 72204, USA
Nancy Kariuki
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439-4837, USA
Deborah Myers
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439-4837, USA
Ali Shaikh
Affiliation:
Department of Chemistry, University of Arkansas at Little Rock, AR, 72204, USA
Tansel Karabacak
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, AR, 72204, USA
Get access

Abstract

In this work, we investigated the electrocatalytic oxygen reduction reaction (ORR) activity of vertically aligned, single-layer, carbon-free, and single crystal Pt nanorod arrays utilizing cyclic voltammetry (CV) and rotating-disk electrode (RDE) techniques. A glancing angle deposition (GLAD) technique was used to fabricate 200 nm long Pt nanorods, which corresponds to Pt loading of 0.16 mg/cm2, on glassy carbon (GC) electrode at a glancing angle of 85° as measured from the substrate normal. An electrode comprised of conventional carbon-supported Pt nanoparticles (Pt/C) was also prepared for comparison with the electrocatalytic ORR activity and stability of Pt nanorods. CV results showed that the Pt nanorod electrocatalyst exhibits a more positive oxide reduction peak potential compared to Pt/C, indicating that GLAD Pt nanorods are less oxophilic. In addition, a series of CV cycles in acidic electrolyte revealed that Pt nanorods are significantly more stable against electrochemically-active surface area loss than Pt/C. Moreover, room temperature RDE results demonstrated that GLAD Pt nanorods exhibit higher area-specific ORR activity than Pt/C. The enhanced electrocatalytic ORR activity of Pt nanorods is attributed to their larger crystallite size, single-crystal property, and the dominance of (110) crystal planes on the large surface area nanorods sidewalls, which has been found to be the most active plane for ORR. However, the Pt nanorods showed lower mass specific activity than the Pt/C electrocatalyst due to the large diameter of the Pt nanorods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Basic Research Needs for the Hydrogen Economy”, Report of the DOE Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use, May 13–15, 2003, online copy available at http://www.sc.doe.gov/bes/hydrogen.pdf.Google Scholar
2. Fuel Cell Handbook, EG&G Technical Services Inc, 7th Ed (U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2004), online copy available at http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/pubs/FCHandbook7.pdf Google Scholar
3. Zhang, J., “PEM fuel cell electrocatalysts and catalyst layer: fundamentals and applications”, Springer-Verlag London Limited, 2008.Google Scholar
4. Ogumi, Z., Technical Report, Kyoto University 2004, 30-35.Google Scholar
5. Tang, H., Qi, Z. G., Ramani, M., Elter, J. F., J. Power Sources 158, 1306 (2006).Google Scholar
6. Qiao, J. L., Saito, M., Hayamizu, K., Okada, T., J. Electrochem. Soc. 153, A967 (2006).Google Scholar
7. Gasteiger, H. A., Kocha, S. S., Sompalli, B., Wagner, F. T., Applied Catalysis B: Environmental 56, 9–35 (2005).Google Scholar
8. Debe, M. K., Schmoeckel, A. K., Hendricks, S. M., Vernstrom, G. D., Haugen, G. M. and Atanasoski, R. T., ECS Transactions 1 (8), 51–66 (2006).Google Scholar
9. Atkinson, A., Taylor, R. I., Hughes, A. E., Source: Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties), 45(5), 823–33 (1982).Google Scholar
10. Markovic, N. M., Ross, P. N., Surf. Sci. Rep. 45, 121 (2002).Google Scholar
11. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M., Science 315, 493–497 (2007).Google Scholar
12. Chen, Z., Waje, M., Li, W., and Yan, Y., Angew. Chem. Int. Ed. 46, 4060–4063, 2007.Google Scholar
13. Karabacak, T., Lu, T.-M., Handbook of Theoretical and Computational Nanotechnology, edited by Rieth, M. and Schommers, W. (American. Scientific Publishers, Stevenson Ranch, CA) chap. 69, 729 (2005).Google Scholar
14. Karabacak, T., Wang, G. C., Lu, T.-M., J. Vac. Sci. Technol. A22, 1778 (2004).Google Scholar
15. Ye, D.-X., Karabacak, T., Wang, G.-C., Lu, T.-M., Nanotechnology 16, 1717 (2005).Google Scholar
16. Ye, D.-X., Lu, T.-M., Karabacak, T., Physical review letters PRL 100, 256102 (2008).Google Scholar
17. Bhattacharya, A., Karabacak, T., Cansizoglu, F., Wolverton, M., 2009 DOE Hydrogen Program and Vehicle Technologies Program, 2009 Annual Merit Review Proceedings, Project ID# STP_46_Karabacak (2009); online copy available at http://www.hydrogen.energy.gov/annual_review09_proceedings.html Google Scholar
18. Schmidt, T. J., Gasteiger, H. A., Stab, G. D., Urban, P. M. et al. . J. Electrochem. Sco. 145, 2354 (1998).Google Scholar
19. Higuchi, E., Uchida, H., Watanabe, M., J. Electroanal. Chem. 583, 69 (2005).Google Scholar
20. Khudhayer, Wisam J., Kariuki, Nancy, Wang, Xiaoping, Myers, Deborah J., Shaikh, Ali U., and Karabacak, Tansel, Submitted to Journal of Electrochemical Society (under review).Google Scholar
21. Karabacak, T., DeLuca, J. S., Ye, D., Wang, P.-I, Wang, G.-C., Lu, T.M., J. Appl. Phys. 99, 064304 (2006).Google Scholar
22. Karabacak, T., Wang, P.-I., Wang, G.-C., Lu, T.-M., Thin Solid Films 493, 293 (2005).Google Scholar
23. Karabacak, T., Wang, P.-I., Wang, G.-C., Lu, T.-M., Mat. Res. Soc. Symp. Proc. 788, 75 (2004).Google Scholar
24. Atkinson, A., Taylor, R. I., Hughes, A. E., Source: Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties), 45(5), 823–33 (1982).Google Scholar
25. Komanicky, V., Chang, K. C., Menzel, A., Markovic, N. M., You, H., Wang, X., and Myers, D. J. of The Electrochemical Society, 153, 10, B446–B451 (2006).Google Scholar
26. Khudhayer, Wisam J., Sharma, R., and Karabacak, T., Nanotechnology Journal 20, 275302 (9pp), (2009).Google Scholar
27. Ralph, T. R., Hards, G. A., Keating, J. E., Campbell, S. A., Wilkinson, D. P. et al. . J. Elcetrochem. Sco. 144, 3845 (1997).Google Scholar
28. Markovic, N. M., Gasteiger, H. A., Ross, P. N., J. Electrochem. Soc. 144, 1591 (1997).Google Scholar
29. Mayrhofer, K. J. J., Strmcink, D., Blizanac, B. B., Stamenkovic, V., Arenz, M., and Markovic, N. M., Electrochemical Acta 53, 3181–3188 (2008).Google Scholar
30. Subbaraman, R., Strmcnik, D., Stamenkovic, V., and Markovic, N. M., J. Phys. Chem. C 114, 8414–8422 (2010).Google Scholar
31. Subbaraman, R., Strmcnik, D., Paulikas, A. P., Stamenkovic, V. R., and Markovic, N. M., Chem. Phys. Chem. 11, 2825 – 2833 (2010).Google Scholar