Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-13T03:37:16.591Z Has data issue: false hasContentIssue false

From the Spider to the Web: Biomimetic Processing of Protein Polymers and Collagen

Published online by Cambridge University Press:  15 February 2011

Jean S. Stephens
Affiliation:
Department of Materials Science and Engineering, University of Delaware and Delaware Biotechnology Institute, University of Delaware Newark, DE 19716.
John F. Rabolt*
Affiliation:
Department of Materials Science and Engineering, University of Delaware and Delaware Biotechnology Institute, University of Delaware Newark, DE 19716.
Stephen R. Fahnestock
Affiliation:
Central Research and Development, Experimental Station, Dupont, Wilmington, DE 19880
D. Bruce Chase
Affiliation:
Central Research and Development, Experimental Station, Dupont, Wilmington, DE 19880, and Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716.
*
§Author to whom correspondence should be addressed
Get access

Abstract

The use of electrostatic forces to shape materials processed from solution provides exciting opportunities to enhance material properties by creating new structures and morphologies during processing. In this context we report the formation of nanoscale webs composed of interconnected electrospun polymer fibrils. These nanowebs have been formed from synthetic spider silk, collagen, and denatured collagen when they are electrospun from various concentrations of formic acid. These nanowebs have been characterized by field emission scanning electron microscopy (FESEM) in order to characterize their morphology and measure their surface areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jiang, P. Cizeron, J. Bertone, J. F. Colvin, V.L. J. Am. Chem. Soc. 1999, 121, 7957.Google Scholar
2. Velev, O. D. Tessier, P. M. Lenhoff, A. M. Kaler, E. W. Nature 1999, 401, 548.Google Scholar
3. Tessier, P. M. et al., J. Am. Chem. Soc. 2000, 122, 9554.Google Scholar
4. Fong, H. Reneker, D. H. J. Polymer Science: Part B Physics 1999, 37, 3488.Google Scholar
5. Park, C. Cheng, J. Y. Fasolka, M. J. Mayes, A. M. Ross, C. A. Thomas, E. L. Rosa, C. De, Applied Physics Letters 2001, 79 (6), 848.Google Scholar
6. Zhu, L. Mimnaugh, B. R. Ge, Q. Quirk, R. P. S.Cheng, Z.D. Thomas, E. L. Lotz, B. Hsiao, B. S., Yeh, F.J. Liu, L.Z. Polymer 2001, 42 (21), 9121.Google Scholar
7. Bates, F. S. Frederickson, G. H. Annual Rev. Phys. Chem. 1990, 41, 525.Google Scholar
8. Sleytr, U. B. Messner, P., Pum, D. Sara, M. Angew. Chem. Int. Ed. 1999, 38, 1034.Google Scholar
9. Sleytr, U. B. Sara, M. Trends in Biotechnology 1997, 15, 20.Google Scholar
10. Megelski, S. Stephens, J. S. Chase, D. B. Rabolt, J. F. Macromolecule 2002,Google Scholar
11. Srinivasarao, M. Collings, D. Philips, A. Patel, S. Science 2001, 292, 79.Google Scholar
12. Gao, C., Fang, A. L. Yi, X. S. Shen, J. C. Polymer Int. 2000, 49, 323.Google Scholar
13. Gao, C. Li, A. Yi, X. Shen, J. J. Applied Polymer Science 2001, 81, 3523.Google Scholar
14. Strawhecker, K. E. Kumar, S. K. Douglas, J. F. Karim, A. Macromolecules 2001, 34, 4669.Google Scholar
15. Baumgarten, P. K. J. Colloid and Interface Science 1971, 36, 71.Google Scholar
16. Reneker, D. H. Chun, I. Nanotechnology 1996, 7, 216.Google Scholar
17. Reneker, D. H. Yarin, A. L. Fong, H. Koombhonges, S. J. Applied Physics 2000, 87, 4531.Google Scholar
18. Fang, X. Reneker, D. H. J. Macromolecular Science-Physics 1997, B36, 169.Google Scholar
19. Lazaris, A. Arcidiacono, S. Huang, Y. Zhou, J. F. Duguay, F. Chretien, N. Welsh, E.A. Soares, J. W., Karatzas, C. N. Science 2002, 295, 472.Google Scholar
20. O'Brien, J. P., Fahnestock, S. R. Termonia, Y. Gardener, K. C. H., Advanced Materials 1998, 10, 1185.Google Scholar
21. Madsen, B. Shao, Z. Z. Vollrath, F. International Journal of Biological Macromolecules 1999, 24, 301.Google Scholar
22. Rabolt, J. F. Pochan, D. J. Stephens, J. S. Provisional Patent, 2002.Google Scholar
23. Thomas, J. M. Thomas, W. J. Principles and Practice of Heterogeneous Catalysis, VCH, New York, 1997.Google Scholar
24. Deitzel, J.M. Klienmeyer, J. Harris, D. Tan, N. C. B. Polymer 2001, 42, 261.Google Scholar
25. Shim, Y.M. Hohman, M.M., Brenner, M. P. Rutledge, G. C. Applied Physics Letters 2001, 78, 1149.Google Scholar
26. Koombhongse, S, Liu, W, DH, Reneker, J Poly Sci B:Poly Phys 2001, 39, 2598.Google Scholar
27. Dalnoki-Veress, K, BG, Nickel, JR, Dutcher, Phys Rev Lett, 1999, 82, 1486.Google Scholar
28. Matthews, J.A. Wnek, G. E., Simpson, D. C. Bowlin, G. L. Biomacromolecules 2002, 3, 232.Google Scholar
29. Langer, R. Vacanti, J. P. Science 1993, 260, 920 Google Scholar
30. Buchko, C. J. Chen, L. C. Shen, Y. Martin, D. C. Polymer 1999, 40, 7397.Google Scholar
31. Buchko, C. J. Kozloff, K. M. Martin, D. C. Biomaterials 2001, 22, 1289.Google Scholar
32. Maxian, S. H. Stefano, T. Di, Melican, M. C. Tiku, M. L. Zawadsky, J. P. J. Biomedical Materials Research 1998, 40, 171.Google Scholar
33. Ramires, P. A. Romito, A. Cosentino, F. Milella, E. Biomaterials 2001, 22, 1467.Google Scholar