Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:16:49.205Z Has data issue: false hasContentIssue false

Evolution of Surface Morphology During Cu(TMVS)(hfac) Sourced Copper CVD

Published online by Cambridge University Press:  17 March 2011

Daewon Yang
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration, Rensselaer Polytechnic Institute, Troy, NY 12180
Jongwon Hong
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration, Rensselaer Polytechnic Institute, Troy, NY 12180
Timothy S. Cale
Affiliation:
Focus Center – New York, Rensselaer: Interconnections for Gigascale Integration, Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

In this paper, we describe an experimental study of the nucleation and growth stages during Cu(TMVS)(hfac) sourced Cu CVD on TaN substrates. In particular, we have investigated the effects of water vapor as a co-reactant on evolving surface morphology. The results of short (less than 10 s) depositions without/with water vapor indicate that water vapor helps to reduce the incubation time and to enhance the nuclei formation, uniformity, and adhesion (based on AFM analysis). Introducing water vapor during only the initial stage of deposition results in lower roughnesses, larger grain sizes, and lower short-range roughnesses as compared to the films deposited without water vapor. From this study, we conclude that water vapor enhances Cu nucleation and that a relatively small amount of water vapor before or during the initial stage of deposition improves surface morphology in terms of roughness and grain size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Technology Roadmap for Semiconductors, 1999 edition, (http://www.itrs.net/1999_SIA_Roadmap/Home.htm).Google Scholar
2. Singh, R. and Ulrich, R. K., INTERFACE 8(2), 26 (1999).Google Scholar
3. Jain, A., Chi, K.-M., Kodas, T. T. and Hampden-Smith, M. J., J. Electrochem. Soc. 140, 1434 (1993).10.1149/1.2221574Google Scholar
4. Jain, A., Gelatos, A. V., Kodas, T. T., Hampden-Smith, M. J., Marsh, R. and Mogab, C. J., Thin Solid Films 262, 52 (1995).10.1016/0040-6090(94)05809-1Google Scholar
5. Mermet, J.-L., Mouche, M.-J., Pires, F., Richard, E., Torres, J., Palleau, J. and Braud, F., Journal De Physique IV 5, C5517 (1995).10.1051/jphyscol:1995560Google Scholar
7. Naik, M. B., S, Lakshmanan, K., Wentorf, R. H., Reeves, R. R. and Gill, W. N., J. Cryst. Growth 19, 133 (1998).10.1016/S0022-0248(98)00452-7Google Scholar
8. Kim, J.-Y., Lee, Y.-K., Park, H.-S., Park, J.-W., Park, D.-K., Joo, J.-H., Lee, W.-H., Ko, Y.-K., Reucroft, P. J. and Cho, B.-R., Thin Solid films 330, 190 (1998).10.1016/S0040-6090(98)00597-5Google Scholar
10. Kim, S., Park, J.-M. and Choi, D.-J., Thin Solid Films 315, 229 (1998).10.1016/S0040-6090(97)00684-6Google Scholar
11. Website of ThermoMicroscopes (at http://www.park.com/products).Google Scholar
12. Lu, T.-M., Yang, H.-N. and Wang, G.-C., Fractal Aspects of Materials (Mater. Res. Soc. Symp. Proc. Vol. 367, Pittsburgh, PA 1995) pp. 283292.Google Scholar
13. Farkas, J., Hampden-Smith, M. J. and Kodas, T. T., J. Electrochem. Soc. 141, 3539 (1994).10.1149/1.2059367Google Scholar
14. Jain, A., Kodas, T. T., Corbitt, T. S. and Hampden-Smith, M. J., Chem. Mater. 8, 1119 (1996).10.1021/cm950546yGoogle Scholar