Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T15:07:25.127Z Has data issue: false hasContentIssue false

Evidence of Distortion in the Oxygen Environment around Praseodymium in Y1−xPrxBa2Cu3O7 from Praseodymium K-Edge XAFS

Published online by Cambridge University Press:  15 February 2011

Phillip Cervantes
Affiliation:
Department of Physics, University of California, Santa Cruz, CA 95064
Jim Boyce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Tord Claeson
Affiliation:
Physics Department, Chalmers Univ. of Techn., S-41296 Gothenburg, Sweden
Get access

Abstract

In constrast to other rare earths, replacement of Y with Pr in the high Tc superconductor YBa2Cu3O7 has a pronounced effect on Tc, with Tc going to zero at ≈ 55% Pr. We present Pr XAFS K-edge data for various concentrations of Pr in Y1−xPrxBa2Cu3O7. The Pr K-edge data show that the amplitude of the first Pr-O peak is greatly reduced when compared to the first Y-O peak in pure YBa2Cu3O7. In constrast, for the Y K-edge data in these alloys, there is little if any change in the oxygen environment, while the Cu K-edge data show at most a 10% reduction in the first Cu-0 peak. Fits to the Pr data suggest either that oxygen atoms in the CuO2 planes are missing or that some oxygen atoms about the Pr become highly disordered. Either result could help explain the reduction of Tc with increasing concentration of Pr.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Hor, P.H., Meng, R.L., Wang, Y.Q., Gao, L., Huang, Z.J., Bechtold, J., Forster, K., and Chu, C. W., Phys. Rev. Lett. 58, 1891 (1987); (b) S. E. Brown, J. D. Thompson, J. O. Willis, R, M, Aiken, E. Zirgniebl, J. L. Smith, Z. Fisk, and R. B. Schwarz, Phys. Rev. B 36, 2298 (1987).CrossRefGoogle Scholar
2. Schneemeyer, L.F., Wasczak, J. V., Zahurak, S. M., Van Dover, R. B., and Siegrist, T., Mater. Res. Bull. 22, 1467 (1987).CrossRefGoogle Scholar
3. Murphy, D. W., Sunshine, S., Van Dover, R. B., Cava, R. J., Batlogg, B., Zahurak, S. M., and Schneemeyer, L. F., Phys. Rev. Lett. 58, 1888 (1987).CrossRefGoogle Scholar
4. Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgensen, J. D., Segre, C. U., and Schuller, Ivan K., Nature (London) 328, 604 (1987).CrossRefGoogle Scholar
5. Cao, G., O'Reilly, J. W., Crow, J. E., Boliva, J., Nichols, D. and Ting, S. T., Bull. Am. Phys. Soc. 38, 782 (1993).Google Scholar
6. For example, see Kebede, A., Jee, C. S., Schwegler, J., Crow, J. E., Mihalisin, T., Myer, G. H., Salomon, R. E., Schottmann, P., Kuric, M. V., Bloom, S. H., and Guertin, R. P., Phys. Rev. B 40, 4453 (1989).CrossRefGoogle Scholar
7. Soderholm, L., Loong, C.-K., Goodman, G. L., and Dabrowski, B.D., Phys. Rev. B 43, 7923 (1991).CrossRefGoogle Scholar
8. Lowe, C.K. and Vanderah, T.A., Physica C 201, 233 (1992).CrossRefGoogle Scholar
9. Mustre de Leon, J., Rehr, J.J. and Zabinsky, S. I., Phys. Rev. B 44, 4146 (1991).CrossRefGoogle Scholar
10. Li, G. G., Bridges, F. and Brown, G.S., Phys. Rev. Lett. 68, 1609 (1992).CrossRefGoogle Scholar
11. Beno, M.A., Soderholm, L., Capone, D.W. II, Hinks, D.G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K., Appl. Phys. Lett. 51, 57 (1987).CrossRefGoogle Scholar