Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T04:28:01.463Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of FeSi2 Layers

Published online by Cambridge University Press:  03 September 2012

K. Radermacher
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
O. Skeide
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Carius
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
J. Klomfaß
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
S. Manti
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

We fabricated α-FeSi2 and α-FeSi2 layers by using two methods: Ion Beam Synthesis (IBS) and Molecular Beam Allotaxy (MBA). In the latter technique a trapezoidal-shaped Fe profile was embedded in the Si matrix by codeposition of Si and Fe at temperatures of about 650°C. A rapid thermal anneal of the IBS and MBA samples at 1150°C for 10 s is necessary to obtain continuous α-FeSi2 layers. The Fe vacancy concentration of the α-FeSi2 layers was varied by a further anneal at lower temperatures. Resistivity measurements indicate a decrease of the resistivity with decreasing Fe vacancy concentration. The α-FeSi2 was transformed to a continuous β-FeSi2 layer by an anneal at 800°C for several hours. To investigate the nature of the band gap we performed absorption measurements at room temperature and 77 K. The analysis of the room temperature data revealed a direct transition at 0.84 eV and an additional indirect transition at 0.78 eV. At 77 K the direct transition shifts to ≈ 0.875 eV and the indirect to ≈ 0.86 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] White, A.E., Short, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
[2] Mantl, S., Mater. Sci. Rep. 8, 1 (1992).CrossRefGoogle Scholar
[3] Radermacher, K., Mantl, S., Apetz, R., Dieker, Ch. and Lfith, H., Mater. Sci. and Eng. B12, 115 (1992); D.J. Oostra, C.W. Bulle-Lieuwma, D.E.W. Vandenhoudt, F. Felten and J.C. Jans, J. Appl. Phys. 74,4347 (1993); D. Pankin, E. Wieser, R. GrStschel, W. Skorupa, D. Baither, H. Bartsch, G. Querner and A. Danzig, Mater. Sci. and Eng. B12, 119 (1992); T.D. Hunt, B.J. Sealy, K.J. Reeson, R.M. Gwilliam, K.P. Homewood, R.J. Wilson, C.D. Meekison and G.R. Booker, Nucl. Instrum. and Meth. B74, 60 (1993).Google Scholar
[4] Trinkaus, H. and Mantl, S., Nucl. Instr. and Methods, B80/81, 862 (1993).Google Scholar
[5] Mantl, S. and Bay, H.L., Appl. Phys. Lett. 61, 267 (1992).Google Scholar
[6] Sirringhaus, H., Onda, N., Mtiller-Guber, E., Müller, P., Stadler, R. and Kinel, H. von, Phys. Rev. B47, 10567 (1993); Le Thanh Vinh, J. Chevrier and J. Derrien, Phys. Rev. B46, 15946 (1992).CrossRefGoogle Scholar
[7] Bost, M.C. and Mahan, J.E., J. Appl. Phys. 65, 2034 (1988).Google Scholar
[8] Lefki, K. and Muret, P., Appl. Surf. Sci. 65/66, 772 (1993).CrossRefGoogle Scholar
[9] Dimiatriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, M., Weber, J. and Nesper, R., J. Appl. Phys. 68, 1726 (1990).CrossRefGoogle Scholar
[10] Christensen, N.E., Phys. Rev. B42, 7148 (1990); R. Eppenga, J. Appl. Phys. 68, 3027 (1990).Google Scholar
[11] Giannini, C., Lagomarsino, S., Scarinci, F. and Castrucci, P., Phys. Rev. B45, 8822 (1992).Google Scholar
[12] Radermacher, K., Carius, R. and Mantl, S., Nucl. Instrum. and Meth. B, (1993), in press.Google Scholar
[13] Skeide, O., Mantl, S., Radermacher, K., Bay, H.L., Crecelius, G., Dieker, Ch. and Mesters, S., Appl. Surf. Sci., (1993) in press; O. Skeide, K. Radermacher, H.L. Bay, G. Crecelius, D. Guggi, D. Gerthsen, Ch. Dieker, S. Mesters and S. Mantl, Proceedings of the 4th International Conference on the Formation of Semiconductor Interfaces, 14-18 June 1993, JElich, Germany, in press.Google Scholar
[14] Doolittle, L.R., Nuc. Instrum. and Meth. B5, 344 (1985).Google Scholar
[15] Sidorenko, F.A., Gel'd, P.M. and Dubrovskaya, L.B., Fiz. met. metalloved 8, 465 (1959); T.B. Massalski, in Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).Google Scholar
[16] Jackson, W.B., Amer, N.M., Boccara, A.C. and Fournier, D., Appl. Opt. 20, 1333 (1981).Google Scholar
[17] Pankove, J.I., in Optical Processes in Semiconductors (Dover, New York, 1971).Google Scholar