Hostname: page-component-788cddb947-wgjn4 Total loading time: 0 Render date: 2024-10-11T03:50:07.088Z Has data issue: false hasContentIssue false

Development of Scanning Microwave Microscope for High-Throughput Characterization of Combinatorial Dielectric Thin Film

Published online by Cambridge University Press:  17 March 2011

Noriaki Okazaki
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Parhat Ahmet
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Toyohiro Chikyow
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Hiroyuki Odagawa
Affiliation:
Research Institute of Electrical Communication
Yasuo Cho
Affiliation:
Research Institute of Electrical Communication
Tomoteru Fukumura
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Masashi Kawasaki
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Makoto Ohtani
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Hideomi Koinuma
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan Frontier Collaborative Research Center and 6Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
Tetsuya Hasegawa
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

A scanning microwave microscope (Sm M) for high-throughput characterization of combinatorial dielectric materials has been developed using a lumped constant resonator probe. The probe consists of a microwave oscillator module equipped with a thin conducting needle and an outer conductor ring, which detects the dielectric constant of the sample just beneath the needle as a frequency shift of the resonator. The quantitative analysis of the dielectric constant for the bulk and the thin-film samples was carried out based on the measurement of gap-length dependence of the frequency shift. The analysis method was successfully applied to the characterization of composition-spread BaxSr1-xTiO3 thin film sample. The evaluation of far-field contribution to the frequency shift was found to be crucial for the accurate determination of dielectric constant especially in the characterization of combinatorial thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cho, Y., Kirihara, A. and Saeki, T., Rev. Sci. Instrum. 67, 2297 (1996).Google Scholar
2. Wei, T., Xiang, X.-D., Wallace-Freedman, W. G. and Schultz, P. G., Appl. Phys. Lett. 68, 3506 (1996).Google Scholar
3. Lu, Y., Wei, T., Duewer, F., Lu, Y., Ming, N., Schultz, P. G. and Xiang, X.-D., Science 276, 2004 (1997).Google Scholar
4. Takeuchi, I., Wei, T., Duewer, F., Yoo, Y. K., Xiang, X.-D., Talyansky, V., Pai, S. P., Chen, G. C. and Venkatesan, T., Appl. Phys. Lett. 71, 2006 (1997).Google Scholar
5. Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P. G., Xiang, X.-D., Sharma, R. P., Downes, M. and Venkatesan, T., Appl. Phys. Lett. 72, 2185 (1998).Google Scholar
6. Gao, C. and Xiang, X.-D., Rev. Sci. Instrum. 69, 3846 (1998).Google Scholar
7. Lee, J. H., Hyun, S. and Char, K., Rev. Sci. Instrum. 72, 1425 (2001).Google Scholar
8. Cho, Y., Atsumi, S. and Nakamura, K., Jpn. J. Appl. Phys. 36, 3152 (1997).Google Scholar
9. Cho, Y., Matsuura, K. and Kushibashi, J., Jpn. J. Appl. Phys. 37, 3132 (1998).Google Scholar
10. Cho, Y., Matsuura, K., Kazuta, S., Odagawa, H. and Yamanouchi, K., Jpn. J. Appl. Phys. 38, 3279 (1999).Google Scholar
11. Cho, Y., Kazuta, S. and Matsuura, K., Jpn. J. Appl. Phys. 38, 5689 (1999).Google Scholar
12. Cho, Y., Kazuta, S. and Matsuura, K., Appl. Phys. Lett. 75, 2833 (1999).Google Scholar
13. Cho, Y., Kazuta, S., Ohara, K. and Odagawa, H., Jpn. J. Appl. Phys. 39, 3086 (2000).Google Scholar
14. Odagawa, H., Cho, Y., Funakubo, H. and Nagashima, K., Jpn. J. Appl. Phys. 39, 3808 (2000).Google Scholar
15. Okazaki, N., Odagawa, H., Cho, Y., Nagamura, T., Komiyama, D., Koida, T., Minami, H., Ahmet, P., Fukumura, T., Matsumoto, Y., Kawasaki, M., Chikyow, T., Koinuma, H. and Hasegawa, T., Appl. Surf. Sci., in press.Google Scholar