Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T01:01:02.714Z Has data issue: false hasContentIssue false

Crystal Chemistry and Sub-Solidus Phase Relations in (La,Re)2CuO4 Systems

Published online by Cambridge University Press:  28 February 2011

Joseph F. Bringley
Affiliation:
IBM Research Division, Thomas J. Watson Research Center Yorktown Heights, NY 10598
Steven S. Trail
Affiliation:
IBM Research Division, Thomas J. Watson Research Center Yorktown Heights, NY 10598
Michael McElfresh
Affiliation:
IBM Research Division, Thomas J. Watson Research Center Yorktown Heights, NY 10598
Bruce A. Scott
Affiliation:
IBM Research Division, Thomas J. Watson Research Center Yorktown Heights, NY 10598
Get access

Abstract

La2‐xRExCuO4 (RE = Nd‐Y) solid solution systems have been investigated to determine the factors stabilizing the T (La2CuO4), T’ (Nd2CuO4) and hybrid T*‐type structures. A simple ionic model with a perovskite‐like tolerance factor is found to accurately define the existence field of each. Metastable T* phases are observed for the larger RE cations Nd, Gd, Eu. The structure is quite stable for RE = Dy, Tb, but does not occur at all for the smallest rare earths. Oxygen activity plays a role in T’ and T* phase formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Longo, J. M. and Raccah, P. M., J. Solid State Chem. 6,109 (1989.Google Scholar
2 Ganguly, P. and Rao, C. N. R., J. Solid State Chem. 53, 193 (1984).Google Scholar
3 Müller‐ Buschbaum, H., Angew. Chem. Int. Ed. 16, 674 (1977).Google Scholar
4 Tokura, Y., Takagi, H., and Uchida, S., Nature 337, 345 (1989).Google Scholar
5 James, A. C. W. P., Zahurak, S. M. and Murphy, D. W., Nature 338, 240 (1989).Google Scholar
6 Izumi, F., Takayama‐Muromachi, E., Fujimori, A., Kamiyama, T., Asano, Y., Akimitsu, J. and Sawa, H., Physica C158, 440 (1989).Google Scholar
7 Sawa, H., Suzuki, S., Watanabe, M., Akimitsu, J., Matsubara, H., Watabe, H., Uchida, S., Kokusho, K., Asano, H., Izumi, F., Takayama‐ Muromachi, E., Nature 337, 347 (1989).Google Scholar
8 Kenjo, T. and Yajima, S., Bull. Chem Soc. Jpn. 50, 2847 (1977).Google Scholar
9 Tao, Y. K., Sun, Y. Y., Paredes, J., Hor, P. H., and Chu, C. W., J. Solid State Chem. 82, 176 (1989).Google Scholar
10 Bringley, J. F., Trail, S. S. and Scott, B. A., J. Solid State Chem.(submitted).Google Scholar
11 Maeno, Y., Lichtenberg, F., Williams, T., Karpinski, J. and Bednorz, J. G., Jpn. J. Appl. Phys. 28, L926 (1989).Google Scholar
12 Tokura, Y., Takagi, H., Watabe, H., Matsubara, H., Uchida, S., Hiraga, K., Oku, T., Mochiku, T. and Asano, H., Phys. Rev. B (submitted).Google Scholar
13 Hundley, M. F., Thompson, J. D., Cheong, S.‐W., Fisk, Z., Scharwz, R. and Schirber, J. E., Phys. Rev. B. B40, 5251 (1989).Google Scholar
14 Singh, K. K., Ganguly, P. and Rao, C. N. R., Mat. Res. Bull. 17, 493 (1982).Google Scholar
15 Shannon, R., Acta Cryst. A32, 751 (1976).Google Scholar
16 Famery, R. and Queyroux, F., Mat. Res. Bull. 24, 275 (1989).Google Scholar