Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T06:04:24.705Z Has data issue: false hasContentIssue false

The Critical Stress for Plastic Deformation in Ni3(Al,Hf) Single Crystals.

Published online by Cambridge University Press:  01 January 1992

P. Spätig
Affiliation:
Ecole Polytechnique Fèdèrale de Lausanne, Institut de Gènie Atomique, Dèpartement de Physique, 1015 Lousanne, (Switzerland)
J. Bonneville
Affiliation:
Ecole Polytechnique Fèdèrale de Lausanne, Institut de Gènie Atomique, Dèpartement de Physique, 1015 Lousanne, (Switzerland)
J-L. Martin
Affiliation:
Ecole Polytechnique Fèdèrale de Lausanne, Institut de Gènie Atomique, Dèpartement de Physique, 1015 Lousanne, (Switzerland)
Get access

Abstract

A new method of relaxation series is proposed which allows for the measurement of the apparent activation volumes and of the hardening correction terms. This method is successfully applied to the measurement of the effective activation volumes along the stress strain curves. A transition stress between a microplastic and a macroplastic domain can be unambiguously defined on the plots of the effective volume as a function of strain. The corresponding transition stress measured at three temperatures in the range of the flow stress anomaly (293K, 423K, 573K), agrees reasonably well with the values of τ0.2%. The latter stress was usually considered as the critical stress for plastic deformation, in former studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimiduk, D. M., J. de Phys. III 1, 1025 (1991).Google Scholar
2. Mulford, R. A. and Pope, D. P., Acta Metall. 21, 1375 (1973).Google Scholar
3. Hemker, K. J., Mills, M. J. and Nix, W. D., J. Mat. Res. 7, 2059 (1992).Google Scholar
4. Hemker, K. J., Mills, M. J., Forbes, K. R., Stembergh, D. D. and Nix, W. D., Proc. 9th ICSMA, Ed. Brandon, D. G., Chaim, R. and Rosen, A., Freund Publishing, 1, 271 (1991).Google Scholar
5. Thornton, P. H., Davies, R. G. and Johnson, T. L., Metall. Trans. 1, 207 (1970).Google Scholar
6. Stoiber, J., Bonneville, J. and Martin, J-L., Proc. 8th ICSMA, Ed. Kettunen, P. O., Lepistö, T. K. and Lehtonen, M.E., Pergamon Press, 1, 457 (1988).Google Scholar
7. Bonneville, J. and Martin, J-L., Mat. Res. Soc. Symp. Proc. 213, 629 (1991).Google Scholar
8. Escaig, B., J. de Phys. 35, C7151 (1974).Google Scholar
9. Farvacque, J-L., Crampon, J., Doukhan, J-C. and Ecsaig, B., Phys. Stat. Sol. 14, 623 (1972).Google Scholar
10. Meakin, J. D., Can. J. of Phys. 45, 1121 (1967).Google Scholar
11. Sätig, P., Bonneville, J. and Martin, J-L., submitted to Mat. Scie. Eng. (1992).Google Scholar
12. Groh, P. and Conte, R., Acta. Metall. 19, 895 (1971).Google Scholar
13. Bonneville, J., Baluc, N. and Martin, J-L., Proc. 6th JIMIS on Intermetallic Coumpounds, Ed. by Izumi, O., Sendai, Japan, 323 (1991).Google Scholar
14. Guiu, F. and Pratt, P. L., Phys. Stat. Sol. 6, 111 (1964).Google Scholar
15. Kubin, L. P., Phil. Mag. 30, 705 (1974).Google Scholar
16. Bonneville, J., Martin, J-L. and Escaig, B., Acta Metall. 36, 1989 (1988).Google Scholar