Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T18:56:28.488Z Has data issue: false hasContentIssue false

Control of Morphology and Growth Direction of Gallium Nitride Nanostructures

Published online by Cambridge University Press:  01 February 2011

Seung Yong Bae
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, Korea
Hee Won Seo
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, Korea
Jeunghee Park
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339–700, Korea
Get access

Abstract

Various shaped single-crystalline gallium nitride (GaN) nanostructures were produced by chemical vapor deposition method in the temperature range of 900–1200 °C. Scanning electron microscopy, transmission electron microscopy, electron diffraction, x-ray diffraction, electron energy loss spectroscopy, Raman spectroscopy, and photoluminescence were used to investigate the structural and optical properties of the GaN nanostructures. We controlled the GaN nanostructures by the catalyst and temperature. The cylindrical and triangular shaped nanowires were synthesized using iron and gold nanoparticles as catalysts, respectively, in the temperature range of 900 – 1000 °C. We synthesized the nanobelts, nanosaws, and porous nanowires using gallium source/ boron oxide mixture. When the temperature of source was 1100 °C, the nanobelts having a triangle tip were grown. At the temperature higher up to 1200 °C the nanosaws and porous nanowires were formed with a large scale. The cylindrical nanowires have random growth direction, while the triangular nanowires have uniform growth direction [010]. The growth direction of the nanobelts is perpendicular to the [010]. Interestingly, the nanosaws and porous nanowires exhibit the same growth direction [011]. The shift of Raman, XRD, and PL bands from those of bulk was correlated with the strains of the GaN nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, S., Nature 354, 56 (1991).Google Scholar
2 Hu, J., Odom, T. W., and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
3 Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
4 Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
5 Bogachek, E. N., Scherbakov, A. G., and Landman, U., Phys. Rev. B 56, 1065 (1997).Google Scholar
6 Zeng, H., Michalski, S., Kirby, R. D., Sellmyer, D. J., Menon, L., and Bandyopadhyay, S., J. Phys.: Condens. Matter 14, 715 (2002).Google Scholar
7 Mohammad, S. N. and Morkoç, H., Prog. Quantum Electron. 20, 361 (1996).Google Scholar
8 Ponce, F. A. and Bour, D. P., Nature 386, 351 (1997).Google Scholar
9 Nakamura, S., Science 281, 956 (1998).Google Scholar
10 Seo, H. W., Bae, S. Y., Park, J., Yang, H., Park, G. S., and Kim, S., J. Chem. Phys. 116, 9492 (2002).Google Scholar
11 Bae, S. Y., Seo, H. W., Park, J., Yang, H., Kim, H., and Kim, S., Appl. Phys. Lett. 82, 4564 (2003).Google Scholar
12 Bae, S. Y., Seo, H. W., Park, J., Yang, H., Park, J. C., and Lee, S. Y., Appl. Phys. Lett. 81, 126 (2002).Google Scholar
13 Bae, S. Y., Seo, H. W., Park, J., and Yang, H., Chem. Phys. Lett. 373, 620 (2003).Google Scholar
14 Bae, S. Y., Seo, H. W., Park, J., and Yang, H, Chem. Phys. Lett. 376, 445 (2003).Google Scholar
15 Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., and Yang, P., Nano Lett. 3, 1063 (2003).Google Scholar
16 Neumayer, D. A. and Ekerdt, J. G., Chem. Mater. 8, 9 (1996).Google Scholar
17 Azuhata, T., Sota, T., Suzuki, K., and Nakamura, S., J. Phys.: Condens. Matter 7, L129 (1995).Google Scholar
18 Yu. Davydov, V., Kitaev, Yu. E., Goncharuk, I. N., Smirnov, A. N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P., and Evarestov, R. A., Phys. Rev. B 58, 12899 (1998).Google Scholar
19 Klose, M., Wieser, N., Rohr, G. C., Dassow, R., Scholz, F., and Off, J., J. Crystal Growth 189/190, 634 (1998).Google Scholar