Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T15:19:18.560Z Has data issue: false hasContentIssue false

Control and Variation of Stress in Pecvd SiNx Films on InP

Published online by Cambridge University Press:  22 February 2011

J. Lopata
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. C. Dautremont-Smith
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. W. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Stress in plasma enhanced chemical vapor deposited (PECVD) SiNx films on InP has been evaluated as a function of source gases (NH3 /SiH4 or N2/SiH4) and plasma operating frequency (high, » 1 MHz or low, « 1 MHz). All films were deposited at 300°C in the same parallel-plate, radial flow plasma reactor. Levels of stress in PECVD SiNx on InP within a continuous range from moderately high tensile (∼ 5 × 109 dyne cm−2) to very high compressive (2 × 1010 dyne cm−2 ) were obtained from appropriate choices of deposition parameters. Deposition from NH3/SiH4 at high frequency produces tensile stress, of magnitude increasing with NH3/SiH4 flow ratio. Deposition from N2/SiH4 at high frequency produces zero to low compressive stress. At low frequency compressive stress is always produced; for N2/SiH4 increasing the gas flow ratio from 25:1 to 500:1 reduces the compressive stress from 1.8 X 1010 to 7 × 108 dyne cm−2. The ability to vary the stress in a dielectric film of approximately constant chemical composition over such a broad range is beneficial for assessing the effects of stress on device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sinha, A. K., Levinstein, H. J., Smith, T. E., Quintana, G., and Haszko, S. E., J. Electrochem. Soc., 125, 601 (1978).CrossRefGoogle Scholar
2. Claassen, W. A. P., Valkenburg, W. G. J., Wijgert, W. M. v. d., and Willemsen, M. F. C., Thin Solid Films, 129, 239 (1985).Google Scholar
3. Dautremont-Smith, W. C., Gottscho, R. A., Schutz, R. J., in Semiconductor Materials and Process Technology Handbook, McGuire, G. E. (ed.), Microelectronics Center of North Carolina, (1988).Google Scholar
4. Koyama, K., Takasaki, K., Maeda, M., and Takagi, M., in Proc. 3rd Symp. on Plasma Processing, Dieleman, J., Frieser, R. G., and Mathad, G. S. (eds.), Tne Electrochemical Society, Vol.82–6, 478 (1982).Google Scholar
5. Claassen, W. A. P., Valkenburg, W. G. J. N., Willemsen, M. F. C., and Wijgert, W. M. v. d., J. Electrochem. Soc., 132, 898 (1985).Google Scholar
6. Martinet, F., Geugan, G., Jesionka, J. C., in Proc. Symp. on Silicon Nitride Thin Insulating Films, The Electrochemical Society, Vol.83–8, 190 (1983).Google Scholar
7. Rozgonyi, G. A. and Miller, D. C., Thin Solid Films 41, 57 (1977).Google Scholar
8. Rozgonyi, G. A. and Miller, D. C. in Crystal Growth: A Tuturial Approach, Bardsley, W., Hurle, D. J. J., Mullins, J. B. (eds.), North-Holland, 307 (1979).Google Scholar
9. Brenner, A. and Senderoff, S., J. Res. Nat. Bur. Stand., 42, 105 (1949).Google Scholar
10. Claassen, W. A. P. in Plasma Chemistry and Plasma Processing, Plenum Vol.7, No. 1, 109 (1987).Google Scholar