Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T05:43:53.015Z Has data issue: false hasContentIssue false

Comparison Between Ion-Beam and Thermal-Annealing Induced Solid Phase Epitaxy in Fe-Implanted Si

Published online by Cambridge University Press:  03 September 2012

X.W. Lin
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
J. Desimoni
Affiliation:
Centre de Spectromètrie Nucléaire et Spectromètrie de Masse, Bât. 108, 91405 Orsay Campus, France
H. Bernas
Affiliation:
Centre de Spectromètrie Nucléaire et Spectromètrie de Masse, Bât. 108, 91405 Orsay Campus, France
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
J. Washburn
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, CA 94720
Get access

Abstract

Rutherford backscattering spectrometry and transmission electron microscopy were used to compare thermally induced solid phase epitaxy (SPE) with ion-beam induced epitaxial crystallization (IBIEC) of Fe-implanted Si (001). It was found that thermal annealing leads to both Si SPE and β-FeSi2 precipitation at 520°C, but has no visible effect at 320°C. In contrast, Si SPE and FeSi2 precipitation occur at both 320 and 520°C, when ion irradiation is introduced. The precipitates grow epitaxially as γ-FeSi2 at 320°C, but consist of both β-FeSi2 and γ-FeSi2 at 520°C. It was also found that thermal annealing at 520°C results in Fe segregation toward the surface, while IBIEC basically retains the as-implanted Fe profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, A., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987);Google Scholar
2. Oostra, D.J., Vandenhoudt, D.E.W., Bulle-Lieuwma, C.W.T., and Naburgh, E.P., Appl. Phys. Lett. 59, 1737 (1991); K. Radermacher, S. Mantl, Ch. Dieker, and H. Liith, ibid. 59, 2145 (1991).Google Scholar
3. Desimoni, J., Bernas, H., Behar, M., Lin, X.W., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett., 62, 306 (1993).Google Scholar
4. Lin, X. W., Behar, M., Desimoni, J., Bernas, H., Washburn, J., and Liliental-Weber, Z., Appl. Phys. Lett. 63, 105 (1993), and references therein.Google Scholar
5. Lin, X.W. et al. (to be published).Google Scholar
6. Priolo, F., Spinella, C., and Rimini, E., Phys. Rev. B 41, 5235 (1990).Google Scholar
7. Weber, E.R., Appl. Phys. A 30, 1 (1983).Google Scholar
8. Souza, J.P. de, Amaral, L., and Fichtner, P.F.P., J. Appl. Phys. 71, 5423 (1992).Google Scholar
9. Poate, J.M., Jacobson, D.C., Priolo, F., and Thompson, M.O., Mat. Res. Sco. Symp. Proc. vol. 128, 533 (1989), and references thereinGoogle Scholar
10. Lin, X.W., Liliental-Weber, Z., Washburn, J., Desimoni, J., and Bernas, H., Proc. 51st Annual Meeting of the Microscopy Society of America, edited by Bailey, G.W. and Rieder, C.L., (San Francisco Press, San Francisco, 1993), p. 808.Google Scholar
11. Derrien, J., Chevrier, J., Thanh, V. Le, and Mahan, J.E., Appl. Surf. Sci. 56–58, 382, (1992), and references therein.Google Scholar