Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-03T10:07:30.989Z Has data issue: false hasContentIssue false

Coherent Lattice Vibrations in Bi and Sb

Published online by Cambridge University Press:  15 February 2011

J. Vidal
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139
T. K. Cheng
Affiliation:
Department of Electrical Engineering and Computer Science, MIT, Cambridge MA 02139
H. J. Zeiger
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139
G. Dresselhaus
Affiliation:
Francis Bitter National Magnet Laboratory, MIT, Cambridge MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139 Department of Electrical Engineering and Computer Science, MIT, Cambridge MA 02139
E. P. Ippen
Affiliation:
Department of Electrical Engineering and Computer Science, MIT, Cambridge MA 02139
Get access

Abstract

Femtosecond time-resolved optical techniques have been shown to generate coherent phonons in some semimetals and narrow gap semiconductors. A previously-reported model describes the mechanism for generation of coherent lattice vibrations via the optically excited carriers. One of the most interesting consequences of such coherent lattice motion is the modulation of the electronic bands - and possibly of the transport properties of the material — at a THz timescale. Preliminary results are given for a band structure calculation, performed to evaluate the magnitude of these laser-induced band shifts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gonze, X., Michenaud, J. -P., and Vigneron, J. -P., Phys. Rev. 41, 11827 (1990).CrossRefGoogle Scholar
[2] Cheng, T. K., Vidal, J., Zeiger, H. J., Dresselhaus, G., Dresselhaus, M. S., and Ippen, E. P., Appl. Phys. Lett. 59, 1923 (1991).CrossRefGoogle Scholar
[3] Fork, R. L., Greene, B. I., and Shank, C. V., Appl. Phys. Lett. 38, 671 (1981).CrossRefGoogle Scholar
[4] Ippen, E. P. and Shank, C. V.. In Ultrashort Light Pulses, edited by Shapiro, S. L., page 83, Springer-Verlag, Berlin, 1984. Chap. 3.Google Scholar
[5] Zeiger, H. J., Vidal, J., Cheng, T. K., Ippen, E. P., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 45, 768 (1991).CrossRefGoogle Scholar
[6] Cheng, T. K., Vidal, J., Zeiger, H. J., Dresselhaus, G., Dresselhaus, M. S., and Ippen, E. P., Appl. Phys. Lett. 62, 1901 (1993).CrossRefGoogle Scholar
[7] Cohen, M. H., Falicov, L. M., and Golin, S., IBM J. Res. Dev. 8, 215 (1964).CrossRefGoogle Scholar
[8] Falicov, L. M., and Lin, P. J., Phys. Rev. 141, 562 (1966), and references therein.CrossRefGoogle Scholar
[9] Golin, S., Phys. Rev. 166, 643 (1968), and references therein.CrossRefGoogle Scholar
[10] Landolt-Börnstein, , Numerical data and Functional Relationships in Science and Technology, Volume III/17 e. Editors: Madelung, O., Schulz, M., Weiss, H., Springer-Verlag, New York (1983).Google Scholar
[11] Lopez, A. A., Phys. Rev. 175, 823 (1968).CrossRefGoogle Scholar