Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T16:00:55.359Z Has data issue: false hasContentIssue false

Approaches for Optimizing and Tuning the Optical Limiting Response of Phthalocyanine Complexes

Published online by Cambridge University Press:  15 February 2011

J. W. Perry
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Beckman Institute, California Institute of Technology, Pasadena, CA 91125
K. Mansour
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. R. Marder
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Beckman Institute, California Institute of Technology, Pasadena, CA 91125
C.-T. Chen
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125
P. Miles
Affiliation:
Logicon RDA, 6053 West Century Blvd., P.O. Box 92500, Los Angeles, CA 90009
M. E. Kenney
Affiliation:
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
G. Kwag
Affiliation:
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

Recent progress on the use of molecular engineering approaches for the enhancement and spectral tuning of the optical limiting responses of phthalocyanine complexes is presented. Examples are given involving the use of the heavy-atom approach to enhance the limiting response of naphthalocyanines and of donor substitution of naphthalocyanines to red shift the optical limiting response, as demonstrated for indium and tin octabutoxynaphthalocyanines. These approaches have led to new materials for optical limiting with potential for high performance. An experimental demonstration of the “bottleneck” limiter concept, in which the optical-limiting material is distributed nonhomogeneously to permit strong pumping of excited-state population throughout the interaction region, is presented and shows an order-of-magnitude increase in pulse suppression compared to a homogeneous distribution, without an increase in linear absorbance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coulter, D. R., Miskowski, V. M., Perry, J. W., Wei, T.-H., Van Stryland, E. W., Hagan, D. J., Proc. SPIE 1105, 42 (1989).Google Scholar
2. Shirk, J. S., Pong, R. G. S., Bartoli, F. J., Snow, A. W., Appl. Phys. Lett. 63, 1880 (1993).Google Scholar
3. Perry, J. W., Mansour, K., Marder, S. R., Perry, K. J., Alvarez, D. Jr., Choong, I., Opt. Lett. 19, 625 (1994).Google Scholar
4. Perry, J. W., Khundkar, L. R., Coulter, D. R., Alvarez, D. Jr., Marder, S. R., Wei, T. H., Sence, M. J., Van Stryland, E. W. and Hagan, D. J., in “Organic Molecules for Nonlinear Optics and Photonics,” J., Messier, F., Kajzar and P., Prasad, Eds., NATO ASI Series E, Vol.194, pp. 369382 (Kluwer Academic Publishers, New York, 1991)Google Scholar
5. Miles, P., Appl. Optics, 33, 69656979 (1994).Google Scholar
6. Rihter, B. D., Kenney, M. E., Ford, W. E., Rodgers, M. A. J., J. Am. Chem. Soc. 112, 8064 (1990).Google Scholar
7. Rihter, B. D., Kenney, M. E., Ford, W. E., Rodgers, M. A. J., J. Am. Chem. Soc. 115, 8146 (1993).Google Scholar
8. Arbogast, J. W., Darmanyan, A. P., Foote, C. S., Rubin, Y., Diederich, F. N., Alvarez, M. M., Anz, S. J., and Whetten, R. L., J. Phys. Chem. 95, 11 (1991).Google Scholar
9. Mansour, K., Fuqua, P., Marder, S. R., Dunn, B., and Perry, J. W. Proc. SPIE 2143, 239 (1994).Google Scholar
10. Mansour, K., Chen, C.-T., Marder, S. R., Miles, P. and Perry, J. W., submitted for publlication.Google Scholar