Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T21:36:38.119Z Has data issue: false hasContentIssue false

Active Signal Processing: A Counter-intuitive Approach to Enhancing Signal-to-Noise Ratio via Noise Injection

Published online by Cambridge University Press:  01 February 2011

Thomas George
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Sandeep Gulati
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Shahar Ben Menahem
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
James K Breaux
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Cecilie Boysen
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Vijay Daggumati
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Ronald Quon
Affiliation:
thomas.george@vialogy.com, VIalogy Corporation, Product Development, 2400 Lincoln Avenue, Altadena, CA, 91001, United States, 626 296-6270, 626 296 6329
Get access

Abstract

Since its origin in the early 1980s, the noise-injection based stochastic resonance technique has spearheaded a novel counter-intuitive approach toward improving sensor performance. Within this approach, named Active Signal Processing, instead of removing system noise by filtering (Passive Signal Processing), it is possible to improve signal-to-noise ratio (SNR) by injecting noise into the measurement. ViaLogy LLC. has pioneered the development and demonstration of Quantum Resonance Interferometry (QRI), a quantum stochastic resonance (QSR)-based technique for improving SNR. The core of QRI processing involves the QSR-based generation of a Quantum Expressor Function (QEF), which characterizes the system of interest by encoding within it the noise environment, minimum level of detection, and the precision of measurement. Using digital post-processing of sensor information, QRI can determine the presence of a signal by the destruction of the resonance condition responsible for generating the system QEF. For applications aimed at detecting the presence of a weak signal, the strength of the signal is proportional to the number of iterations of the algorithm required for destruction of the resonance; the fewer the iterations, the stronger the signal. The application of QRI for detecting the presence of weakly expressing genes in fluorescent DNA microarrays will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moon, T. K., and Stirling, W. C., Mathematical Methods and Algorithms for Signal Processing, (Prentice Hall, 2000).Google Scholar
2. Benzi, R., Sutera, A., and Vupiani, A., J. Phys. A 14, L453 (1981)..Google Scholar
3. Gammaitoni, L., Hanggi, P., Jung, P., and Marchesoni, F., Rev. Mod. Phys. 70, 223 (1998).Google Scholar
4. Fauve, S., and Heslot, F., Phys. Lett. 97A, 5 (1983).Google Scholar
5. McNamara, B., Wiesenfeld, K., and Roy, R., Phys. Rev. Lett. 60, 2626 (1988).Google Scholar
6. Douglass, J. K., Wilkens, L., Pantazelou, E., and Moss, F., Nature 365, 337 (1993).Google Scholar
7. Levin, J. E., and Miller, J. P., Nature 380, 165 (1996).Google Scholar
8. Lofstedt, R., and Coppersmith, S. N., Phys. Rev. Lett. 72, 1947 (1994), Phys. Rev. E49, 4821 (1994).Google Scholar
9. Grifoni, L., and Hanggi, P., Phys. Rev. Lett. 76, 1611 (1996), Phys. Rev. E54, 1390 (1996).Google Scholar
10. Ben-Menahem, S., unpublished work, 2006.Google Scholar
11. Gulati, S., US Patent# 6,136,541 (2000), 6,671,625 (2003), 6,704,662 (2004), 6,963,806 (2005).Google Scholar
12. For information on Affymetrix GeneChip® products, please visit: http://www.affymetrix.com/products/arrays/index.affxGoogle Scholar
13. Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M-N and Felsenfeld, G., The EMBO Jnl. 20, 2224 (2001).Google Scholar
14. George, T., Urgiles, E., Toda, R., Wilcox, J.Z., Douglas, S., Lee, C-S., Son, K., Miller, D., Myung, N., Madsen, L., Leskowitz, G., El-Gammal, R., and Weitekamp, D., Proc. SPIE 5836, 188 (2005).Google Scholar
15. Leskowitz, G.M., Madsen, L.A., and Weitekamp, D.P., Sol. St. Nucl. Magn. Reson. 11, 73 (1998).Google Scholar