Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T16:38:29.476Z Has data issue: false hasContentIssue false

Vacancy breathing by grain boundaries—a mechanism of memristive switching in polycrystalline oxides

Published online by Cambridge University Press:  09 September 2013

Xiao Shen*
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235
Yevgeniy S. Puzyrev
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235
Sokrates T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, 37235; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, 37235
*
*Address all correspondence to Xiao Shen at xiao.shen@vanderbilt.edu
Get access

Abstract

It is widely believed that switching to the conductive state in memristive materials is triggered by the external field that drives defect dynamics. In polycrystalline materials, grain boundaries are further believed to cause switching by enabling faster defect motion. Here, we report a first-principle study of oxygen vacancy dynamics at a grain boundary (GB) in polycrystalline ZnO and show that switching to the conductive state is triggered by a recombination-enhanced motion of vacancies perpendicular to the GB. We call this mechanism the “breathing” trigger of memristive switching.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S.: The missing memristor found. Nature 453, 80 (2008).CrossRefGoogle Scholar
2Chua, L.O. and Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209 (1976).Google Scholar
3Akinaga, H. and Shima, H.: Resistive random access memory (ReRAM) based on metal oxides. IEEE 98, 2237 (2010).CrossRefGoogle Scholar
4Muthuswamy, B. and Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417 (2009).Google Scholar
5Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., and Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297 (2010).CrossRefGoogle ScholarPubMed
6Pershin, Y.V. and Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78, 113309 (2008).Google Scholar
7Agapito, L.A., Alkis, S., Krause, J.L., and Cheng, H.-P.: Atomistic origins of molecular memristors. J. Phys. Chem. C 113, 20713 (2009).Google Scholar
8Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A., and Grollier, J.: A ferroelectric memristor. Nat. Mater. 11, 860 (2012).Google Scholar
9Oblea, A.S., Timilsina, A., Moore, D., and Campbell, K.A.: Silver chalcogenide based memristor devices. In IEEE International Joint Conference on Neural Networks. Proceedings, 2010; p. 1.Google Scholar
10Asamitsu, A., Tomioka, Y., Kuwahara, H., and Tokura, Y.: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).Google Scholar
11Lee, H.Y., Chen, P-S., Wu, T-Y., Chen, Y.S., Chen, F., Wang, C-C., Tzeng, P-J., Lin, C.H., Tsai, M-J., and Lien, C.: HfOx bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett. 30, 703 (2009).Google Scholar
12Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chungand, U-InMoon, I.T.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004; p. 587.Google Scholar
13Chang, W-Y., Lai, Y-C., Wu, T-B., Wang, S-F., Chen, F., and Tsai, M-J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92, 022110 (2008).CrossRefGoogle Scholar
14Xu, N., Liu, L., Sun, X., Liu, X., Han, D., Wang, Y., Han, R., Kang, J., and Yu, B.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008).CrossRefGoogle Scholar
15Lee, S., Kim, H., Yun, D.-J., Rhee, S.-W., and Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95, 262113 (2009).CrossRefGoogle Scholar
16McKenna, K. and Shluger, A.: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009).CrossRefGoogle Scholar
17Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).CrossRefGoogle ScholarPubMed
18Park, C., Jeon, S.H., Chae, S.C., Han, S., Park, B.H., Seo, S., and Kim, D-W.: Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Appl. Phys. Lett. 93, 042102 (2008).Google Scholar
19Yu, S. and Wong, P.S.: A phenomenological model of oxygen ion transport for metal oxide resistive switching memory. In Memory Workshop (IMW), 2010 IEEE International, 2010; p. 54.Google Scholar
20Korner, W., Bristowe, P.D., and Elsasser, C.: Density functional theory study of stoichiometric and nonstoichiometric ZnO grain boundaries. Phys. Rev. B 84, 045305 (2011).CrossRefGoogle Scholar
21Perdew, J., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
22Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
23Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
24Henkelman, G. and Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).Google Scholar
25Janotti, A. and Van de Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).CrossRefGoogle Scholar
26Lang, D.V.: Recombination-enhanced reactions in semiconductors. Ann. Rev. of Mater. Sci. 12, 377 (1982).Google Scholar
27Itoh, N. and Stoneham, A.M.: Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2001).Google Scholar
28Karazhanov, S. Zh., Zhang, Y., Wang, W.-L., Mascarenhas, A., and Deb, S.: Resonant defect states and strong lattice relaxation of oxygen vacancies in WO3. Phys. Rev. B 68, 233204 (2003).Google Scholar
29Gavartin, J.L., Muñoz Ramo, D., Shluger, A.L., Bersuker, G., and Lee, B.H.: Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908 (2006).Google Scholar
30Kim, S., Moon, H., Gupta, D., Yoo, S., and Choi, Y.-K.: Resistive switching characteristics of Sol–Gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Devices 56, 696 (2009).Google Scholar