Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T17:29:14.825Z Has data issue: false hasContentIssue false

Multilayer multifunctional advanced coatings for receivers of concentrated solar power plants

Published online by Cambridge University Press:  19 September 2019

L. Charpentier*
Affiliation:
PROMES-CNRS, 7 rue du Four Solaire, F-66120Font-Romeu Odeillo, France
D. Chen
Affiliation:
SIMaP-Université Grenoble-Alpes/CNRS/Grenoble INP, 1130 rue de la piscine, Domaine Universitaire, BP75, F-38402Saint-Martin d'Hères, France
J. Colas
Affiliation:
PROMES-CNRS, 7 rue du Four Solaire, F-66120Font-Romeu Odeillo, France
F. Mercier
Affiliation:
SIMaP-Université Grenoble-Alpes/CNRS/Grenoble INP, 1130 rue de la piscine, Domaine Universitaire, BP75, F-38402Saint-Martin d'Hères, France
M. Pons
Affiliation:
SIMaP-Université Grenoble-Alpes/CNRS/Grenoble INP, 1130 rue de la piscine, Domaine Universitaire, BP75, F-38402Saint-Martin d'Hères, France
D. Pique
Affiliation:
Sil'tronix Silicon Technologies, 382 rue Louis Rustin, Technopole d'Archamps, F-74160Archamps, France
G. Giusti
Affiliation:
Sil'tronix Silicon Technologies, 382 rue Louis Rustin, Technopole d'Archamps, F-74160Archamps, France
J.L. Sans
Affiliation:
PROMES-CNRS, 7 rue du Four Solaire, F-66120Font-Romeu Odeillo, France
M. Balat-Pichelin
Affiliation:
PROMES-CNRS, 7 rue du Four Solaire, F-66120Font-Romeu Odeillo, France
*
Address all correspondence to L. Charpentier at ludovic.charpentier@promes.cnrs.fr
Get access

Abstract

The extending market of concentrated solar power plants requires high-temperature materials for solar surface receivers that would ideally heat an air coolant beyond 1300 K. This work presents investigation on high-temperature alloys with ceramic coatings (AlN or SiC/AlN stacking) to combine the properties of the substrate (creep resistance, machinability) and coating (slow oxidation kinetics, high solar absorptivity). The first results showed that high-temperature oxidation resistance and optical properties of metallic alloys were improved by the different coatings. However, the fast thermal shocks led to high stress levels not compatible due to the differences in thermal expansion coefficients.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Poživil, P., Aga, V., Zagorskiy, A., and Steinfeld, A.: A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49, 498 (2014).CrossRefGoogle Scholar
2.Sachdeva, J. and Singh, O.: Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power. Renew. Energy 139, 765 (2019).CrossRefGoogle Scholar
3.Charpentier, L. and Caliot, C.: The impact of the oxidation on the optical properties of TaC. Sol. Energy Mater. Sol. C 171, 16 (2017).CrossRefGoogle Scholar
4.Greene, G.A. and Finfrock, C.C.: Oxidation of Inconel 718 in air at high temperatures. Oxid. Met. 55, 505 (2001).CrossRefGoogle Scholar
5.Kumar, L., Venkataramani, R., Sundararaman, M., Mukhopadhyay, P., and Garg, S.P.: Studies on the oxidation behavior of Inconel 625 between 873 and 1523 K. Oxid. Met. 45, 221 (1996).CrossRefGoogle Scholar
6.Seo, D., Sayar, M., and Ogawa, K.: SiO2 and MoSi2 formation on Inconel 625 surface via SiC coating deposited by cold spray. Surf. Coat. Technol. 206, 2851 (2012).CrossRefGoogle Scholar
7.Kim, D., Jang, C., and Ryu, W.S.: Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxid. Met. 71, 271 (2009).CrossRefGoogle Scholar
8.Leray, C.: Etude du comportement thermique et thermomécanique des récepteurs solaires sous haut flux radiatif (Université de Perpignan Via Domitia, Perpignan, 2017).Google Scholar
9.Pons, M., Boichoit, R., Coudurier, N., Claudel, A., Blanquet, E., Lay, S., Mercier, F., and Pique, D.: High temperature chemical vapor deposition of aluminum nitride, growth and evaluation. Surf. Coat. Technol. 230, 111 (2013).CrossRefGoogle Scholar
10.Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D.: Thermal Expansion – Metallic Elements and Alloys (IFI/Plenum, New York, Washington, 1975).Google Scholar
11.Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R.: Thermal Expansion – Nonmetallic Solids (IFI/Plenum, New York, Washington, 1977).CrossRefGoogle Scholar
12.Charpentier, L., Balat-Pichelin, M., and Audubert, F.: High temperature oxidation of SiC under helium with low-pressure oxygen-part 1: sintered α-SiC. J. Eur. Ceram. Soc. 30, 2653 (2010).CrossRefGoogle Scholar
13.Paulmier, T., Balat-Pichelin, M., Le Quéau, D., Berjoan, R., and Robert, J.F.: Physico-chemical behavior of carbon materials under high temperature and ion irradiation. Appl. Surf. Sci. 180, 227 (2001).CrossRefGoogle Scholar
14.Balat-Pichelin, M., Robert, J.F., and Sans, J.L.: Emissivity measurements on carbon–carbon composites at high temperature under high vacuum. Appl. Surf. Sci. 253, 778 (2006).CrossRefGoogle Scholar
15.Brodu, E., Balat-Pichelin, M., Sans, J.L., Freeman, M.D., and Kasper, J.C.: Efficiency and behavior of textured high emissivity metallic coatings at high temperature. Mater. Des. 83, 85 (2015).CrossRefGoogle Scholar
16.Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM). (n.d.). http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed December 17, 2018).Google Scholar
17.Hernandez, D., Sans, J.L., Netchaieff, A., Ridoux, P., and Le Sant, V.: Experimental validation of a pyroreflectometric method to determine the true temperature of an opaque surface without hampering reflections. Measurement 42, 836 (2009).CrossRefGoogle Scholar
18.Badini, C. and Laurella, F.: Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism. Surf. Coat. Technol. 135, 291 (2001).CrossRefGoogle Scholar
19.Liu, Z., Gao, W., and He, Y.: Modeling of oxidation kinetics of Y-doped Fe–Cr–Al alloys. Oxid. Met. 53, 341 (2000).CrossRefGoogle Scholar
20.Subhash, G. and Ravichandran, G.: Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression. J. Mater. Sci. 33, 1933 (1998).CrossRefGoogle Scholar
21.Heard, H.C. and Cline, C.F.: Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure. J. Mater. Sci. 15, 1889 (1980).CrossRefGoogle Scholar
Supplementary material: File

Charpentier et al. supplementary material

Charpentier et al. supplementary material

Download Charpentier et al. supplementary material(File)
File 134.7 KB