Hostname: page-component-797576ffbb-58z7q Total loading time: 0 Render date: 2023-12-03T08:55:32.838Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Materials for Magnetic-Tape Media

Published online by Cambridge University Press:  29 November 2013

Get access


Magnetic recording has been responsible for the widespread and inexpensive recording of sound and video. Despite the availability of other means of storing data, such as optical recording and semiconductor devices, flexible magnetic-recording media have advantages such as (1) low cost, (2) stable storage, (3) a relatively high data rate, (4) a relatively short seek time, and (5) high-volumetric information density.

The first commercially available magnetic-recording tapes were produced in 1947 by the 3M Company. Since that time, magnetic tapes have developed rapidly for use in audio, video, and digital-data recording systems.

The linear-analogue technique is commonly used for most audio recorders. The magnetic tape is transported at a speed of several cm/s over a stationary head. On the other hand, helical-scanning rotary heads were developed for video recording, which afforded a high head-to-tape speed of more than several m/s and high recording-density capabilities. However high relative speed causes wear of the tape. The success of a tape in actual use depends critically on its tribological properties.

Magnetic media are divided into two groups: (1) particulate media where magnetic particles are dispersed in a polymer binder with some additives and coated onto the substrate and (2) thin-film media in which monolithic, magnetic thin films are deposited onto the substrate in vacuum. The overwhelming preponderance of media fabricated to date have been coated media. However continuous demand for increasingly higher recording density has led to thin-film media.

Ultrahigh-Density Information-Storage Materials
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Tasaki, A., Tagawa, K., Kita, E., Harada, S., and Kusunose, T., IEEE Trans. Magn. 17 (1981) p. 3026.Google Scholar
2.Mee, C.D. and Daniel, E.D., Magnetic Recording I: Technology (McGraw-Hill Book Company, New York, 1987) p. 130.Google Scholar
3.Bickford, L.R., Blowlow, J.M., and Penoyer, R.F., Proc. Inst. Eng. 104B (S.5) (1957) p. 238.Google Scholar
4.Slonczewski, C., Phys. Rev. 110 (1958) p. 1341.Google Scholar
5.Kishimoto, M., Kitaoka, S., Andoh, H., Amamiya, M., and Hayama, F., IEEE Trans. Magn. 14 (1978) p. 649.Google Scholar
6.Okamoto, K., NASA Conference Publication, vol. 2 (1992) p. 160.Google Scholar
7.Kitahata, S., Kishimoto, M., and Amamiya, M., IEEE Trans. Magn. 23 (1987) p. 2818.Google Scholar
8.Kishimoto, M., Kitahata, S., and Amamiya, M., IEEE Trans. Magn. 22 (1986) p. 732.Google Scholar
9.Chubachi, R. and Tamagawa, N., IEEE Trans. Magn. 20 (1984) p. 45.Google Scholar
10.Sueyoshi, T., Naono, H., Kawanami, M., Amamiya, M., and Hayama, H., IEEE Trans. Magn. p. 42.Google Scholar
11.Sueyoshi, T., Naono, H., and Amamiya, M., IEEE Trans. Magn. 23 (1985) p. 80.Google Scholar
12.Okamoto, K., Okazaki, Y., Nagai, N., and Uedaira, S., presented at the MRM Conference 1995, Oxford, in press.Google Scholar
13.Richter, H.J. and R.Veitch, J., IEEE Trans. Magn. 31 (1995) p. 2883.Google Scholar
14.Kubo, O., Ido, T., and Yokoyama, H., IEEE Trans. Magn. 18 (1982) p. 1122.Google Scholar
15.Nakayama, A., Nakamura, K., Hata, K., and Yamamoto, M., USP 4707411 (1985).Google Scholar
16.Mizunuma, Y., Miyake, H., and Hiura, N., USP 4152485 (1978).Google Scholar
17.Endo, M., Nakamura, K., and Konioshi, S., JP03-188178 (1991).Google Scholar
18.Farkas, J., Hall, D.R., Kim, K.J., and Vadual, R.R., USP 5371166 (1994).Google Scholar
19.Bhushan, B. and William, F.W. Jr., Wear 184 (1995) p. 193.Google Scholar
20.Klaus, E.E. and Bhushan, B., ASLE SP-19 (2) (1985) p. 7.Google Scholar
21.Yanagisawa, M., STLE Trans. SP-19 (1985) p. 16.Google Scholar
22.Lin, J. and A.Wu, W., Proc. Jpn. Int. Tribology Conf. (1990) p. 599.Google Scholar
23.Sianesi, D., Pasetti, A., Fontanelli, R., Bernardi, G.C., and Caporicco, G., Chim. Ind. (Milan) 55 (2) (1973) p. 208.Google Scholar
24.Gumprecht, W.H., U.S. Patent No. 3,242,218 (1966).Google Scholar
25.Ohsaka, Y., Tohzuka, T., and Takaki, S., Eur. Patent No. 0148482 (1985).Google Scholar
26.Kondo, H., Seto, J., Ozawa, K., and Haga, S., J. Magn. Soc. Jpn. 13–S1 (1989) p. 213.Google Scholar
27.Murayama, H., Sano, K., and Yokoyama, F., IEEE Trans. Magn. 31 (6) (1995) p. 2922.Google Scholar
28.Kondo, H. and Kaneda, Y., Proc. Jpn. Int. Tribology Conf. (1994) p. 415.Google Scholar
29.Inaba, H., Ejiri, K., Abe, N., Masaki, K., and Araki, H., IEEE Trans. Magn. 29 (1993) p. 3607.Google Scholar
30.Saitoh, S., Inaba, H., and Kashiwagi, A., IEEE Trans. Magn. 31 (1995) p. 2859.Google Scholar
31.Sasaki, Y., Okamoto, K., Okazaki, Y., Maeda, N., and Kondo, H., Institute of Electronics Information and Communication Engineers, Technical Report (1996).Google Scholar
32.Iijima, Y. and Shinohara, K., National Technical Report, Evaporated Tape “ANGROM,” vol. 25 (5) (1979) p. 1064 (in Japanese).Google Scholar
33.Chiba, K., Sato, K., Ebine, Y., and Sasaki, T., IEEE Trans. Consumer Electron. CE-35 (1989) p. 421.Google Scholar
34.Kawana, T., Onodera, S., and Samoto, T., IEEE Trans. Magn. 31 (6) (1995) p. 2865.Google Scholar
35.Sato, K., Chiba, K., Ito, T., Sasaki, T., and Hokkyo, J., J. Appl. Phys. 69 (8) (1991) p. 4736.Google Scholar
36.Naruse, H., Tateno, Y., Sato, T., Chiba, K., and Sasaki, T., J. Appl. Phys. p. 4742.Google Scholar
37.Nakamura, Y. and Tagawa, I., IEEE Trans. Magn. 25 (5) (1989) p. 4159.Google Scholar