Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T18:00:53.840Z Has data issue: false hasContentIssue false

Hydrogen passivation of vacancies in diamond: Electronic structure and stability from ab initio calculations

Published online by Cambridge University Press:  24 January 2017

Kamil Czelej*
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Piotr Śpiewak
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Get access

Abstract

Point defects in diamond such as vacancies act as a strong donor compensation center; therefore, remarkably reduce electron conductivity of diamond-based devices. Artificial synthesis methods of n-type diamond utilize the hydrogen-containing precursors enabling its diffusion into diamond crystal and subsequent formation of hydrogen-vacancy complexes. Here we employ spin-polarized, hybrid density functional theory calculations, in order to characterize the electronic properties and stability of hydrogen-passivated vacancies in diamond. We found strong thermodynamic preference for hydrogen passivation of four vacancy-related dangling bonds. An analysis of formation energy vs Fermi level diagrams indicate, that strong donor compensation effect associated with vacancies can be entirely neutralized by hydrogen incorporation. Thus, a careful control of hydrogen partial pressure in the growth process might be crucial to improve the electron conductivity of n-type diamond.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A., Science 297, 1670 (2002)Google Scholar
Collins, A.T., Properties and Growth of Diamond, (INSPEC, London, 1994).Google Scholar
Goss, J.P., J. Phys. Condens. Matter. 15, R551 (2003).Google Scholar
Estle, T.L., Estreicher, S., Marynick, D.S., Phys. Rev. Lett. 58, 1547 (1987).Google Scholar
Briddon, P., Jones, R., Lister, G.M.S., J. Phys. C Solid State Phys. 21, L1027 (1988).Google Scholar
Sahoo, N., Mishra, S.K., Mishra, K.C., Coker, A., Das, T.P., Mitra, C.K., Snyder, L.C., Glodeanu, A., Phys. Rev. Lett. 50, 913 (1983).Google Scholar
Saada, D., Adler, J., Kalish, R., Phys. Rev. B. 61, 10711 (2000).Google Scholar
Upadhyay, A., Singh, A.K., Kumar, A., Comput. Mater. Sci. 89, 257 (2014).Google Scholar
Estreicher, S., Ray, A.K., Fry, J.L., Marynick, D.S., Phys. Rev. B. 34, 6071 (1986).Google Scholar
Tachikawa, H., Chem. Phys. Lett. 513, 94 (2011).Google Scholar
Claxton, T., Evans, A., Symons, M., J. Chem. Soc. Faraday Trans. 2. 82, 2031 (1986).Google Scholar
Herrero, C.P., Ramírez, R., Phys. Rev. Lett. 99 (2007).Google Scholar
Nishimatsu, T., Katayama-Yoshida, H., Orita, N., Phys. B Condens. Matter 302 -303, 149 (2001).Google Scholar
Anderson, A.B., Kostadinov, L.N., Angus, J.C., Phys. Rev. B. 67, 1 (2003).Google Scholar
Herrero, C.P., Ramírez, R., Hernández, E.R., Phys. Rev. B. 73, 245211 (2006).Google Scholar
Thiering, G., Gali, A., Phys. Rev. B. 92, 165203 (2015).Google Scholar
Thiering, G., Gali, A., Phys. Rev. B. 94, 125202 (2016).Google Scholar
Blöchl, P.E., Phys. Rev. B. 50,17953 (1994).Google Scholar
Kresse, G., Furthmüller, J., Phys. Rev. B. 54, 11169 (1996).Google Scholar
Heyd, J., Scuseria, G.E., Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).Google Scholar
Heyd, J., Scuseria, G.E., Ernzerhof, M., Erratum: " Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).Google Scholar
Lany, S., Zunger, A., Phys. Rev. B 80, 085202 (2009).Google Scholar
Deák, P., Gali, A., Aradi, B., Frauenheim, T., Phys. Status Solidi Basic Res. 248, 790 (2011).Google Scholar
Czelej, K., Śpiewak, P., Kurzydłowski, K.J., MRS Adv. 1, 1093 (2016).Google Scholar
Śpiewak, P., Kurzydłowski, K.J., Phys. Rev. B 88, 195204 (2013).Google Scholar
Śpiewak, P., Vanhellemont, J., Kurzydłowski, K.J., J. Appl. Phys. 110, 063534 (2011).Google Scholar
Monkhorst, H., Pack, J., Phys. Rev. B. 13, 5188 (1976).Google Scholar
Xiao, Y., Wei, Z., Wang, Z., Comput. Math. with Appl. 56, 1001 (2008).Google Scholar
Lany, S., Zunger, A., Phys. Rev. B. 78, 235104 (2008).Google Scholar