Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T18:34:27.779Z Has data issue: false hasContentIssue false

Biominerals

Published online by Cambridge University Press:  05 July 2018

H. C. W. Skinner*
Affiliation:
Departments of Geology and Geophysics, Orthopaedics and Rehabilitation, Yale University/Yale School of Medicine, New Haven, CT 06520, USA

Abstract

Biominerals are a subset of the mineral kingdom, those created by living creatures. In spite of usually fine grain size and intimate association with organic materials, biominerals are readily identified as common mineral species. Iron hydroxides and oxyhydroxides, calcium carbonates and calcium phosphates from uni- and multi-cellular species are presented as examples of biominerals, and biomineralization processes. Their special morphological, and crystal chemical, characteristics provide unique structural contributions to the life forms that create them. Investigations of novel habitats should present opportunities to expand the number of biominerals and their potential for industrial applications.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addadi, L., Moradian, J., Shay, E., Maroudas, N.G. and Weiner, S. (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite nucleation - relevance to biomineralization. Proceedings of the National Academy of Sciences of the United States of America, 84, 27322736.CrossRefGoogle ScholarPubMed
Albright, J.A. and Skinner, H.C.W. (1979) Bone remodeling dynamics. Pp. 161 - 168 in: The Scientific Basis of Orthopaedics (Albright, J.A. and Brand, R., editors). Appleton-Century-Crofts, New York.Google Scholar
Albright, J.A. and Skinner, H.C.W. (1987) Bone: structural organization and remodeling dynamics. Pp. 161198 in: The Scientific Basis of Orthopaedics, 2nd edition (Albright, J.A. and Brand, R.A., editors). Appleton & Lange, Norwalk CT and Los Altos, CA, USA.Google Scholar
Anderson, P., Elliott, J.C., Dowker, S.E.R. and Bollet-Quivogne, F.R.G. (2003) Scanning microradiography - a digital 2D X-ray imaging technology. G.I.T. Imaging and Microscopy, 5, 2224.Google Scholar
Arakaki, A., Webb, J. and Matsunaga, T (2003) A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magneticum strain AMB-1. Journal of Biological Chemistry, 278, 87458750.CrossRefGoogle ScholarPubMed
Balkwell, D.L., Maratea, D. and Blakemore, R.P. (1980) Ultrastructure of a magnetotactic bacterium. Journal of Bacteriology, 141, 13991408.CrossRefGoogle Scholar
Barrera, E. and Tevesz, M.J.S. (1990) Oxygen and carbon isotope utility for environmental interpreta-tion of recent fossil invertebrate skeletons. Pp. 557566 in: Skeletal biomineralization: patterns, processes and evolutionary trends, Vol 1. (Carter, J.G., editor). Van Nostrand Reinhold, New York.Google Scholar
Bazylinski, D.A. and Frankel, R.B. (2003) Biologically controlled mineralization in prokaryotes. Pp. 217247 in: Biomineralization (Dove, P.M., De Yoreo, J.J. and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Bazylinski, D.A. and Moskowitz, B.M. (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Pp. 181223 in: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Reviews in Mineralogy, 35, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Bazylinski, D.A., Garratt-Reed, A.J. and Frankel, R.B. (1994) Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research and Technique, 27, 389401.CrossRefGoogle ScholarPubMed
Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H. and Aguilar, C. (1999) Iron isotope biosignatures. Science, 285, 18891892.CrossRefGoogle ScholarPubMed
Benz, M., Brune, A. and Schink, B. (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology, 169, 159165.CrossRefGoogle ScholarPubMed
Blake, R., O'Neil, J.R. and Surkov, A. (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. American Journal of Science, 305, (in press).CrossRefGoogle Scholar
Blakemore, R.P. and Blakemore, N.A. (1990) Magnetotactic magnetogens. Pp. 5167 in: Iron Biominerals (Frankel, R.B. and Blakemore, R.P., editors). Plenum Press, New York.Google Scholar
Boivin, G. and Meunier, P.J. (2003) The mineralization of bone tissues: a forgotten dimension in osteoporosis research. Osteoporosis International, 14 (Suppl.3), S19S24.CrossRefGoogle Scholar
Bonel, G. (1972) Contribution a l'etude de le carbonation des apatites. I Syntheses et etudes des proprieties physico-chemiques de apatites carbonates du type A. Annals Chimie (Paris), 7, 6578.Google Scholar
Borowitzka, M.A. (1982) Morphological and cytological aspects of algal calcification. International Review of Cytology, 74, 127160.CrossRefGoogle Scholar
Bosak, T. and Newman, D.K. (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology, 31, 577580.2.0.CO;2>CrossRefGoogle Scholar
Brookins, D.G. (1988) Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Brown, C.J., Cherney, S.R.N., Smith, B., Tomkins, A., Roberts, G.J. Serunjogi, L. and Thompson, M. (2002) A sampling and analytical methodology for dental trace elements analysis. Analyst, 127, 319323.CrossRefGoogle Scholar
Brown, D.A., Sawicki, J.A. and Sherriff, B.L (1998) Alteration of microbially precipitated iron oxides and hydroxides. American Mineralogist, 83, 14191425.CrossRefGoogle Scholar
Caccavo, F. Jr. Lonergan, D.J., Lovley, D.R., Davis, M., Stoltz, J.F. and Mclnerny, M.J. (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal reducing microorganism. Applied Environmental Microbiology, 60, 37523759.CrossRefGoogle ScholarPubMed
Carpenter, S.J. and Lohmann, K.C. (1992) Sr/Mg ratios of modern marine calcite - empirical indicators of ocean chemistry and precipitation rate. Geochmica et Cosmochimica Acta, 56, 18371849.CrossRefGoogle Scholar
Carvalho, M.L., Casaca, C., Marques, J.P., Pinheiro, T. and Cunha, A.S. (2001) Human teeth elemental profiles measured by synchrotron X-ray fluorescence: dietary habits and environmental influence. X-ray Spectrometry, 30, 190193.CrossRefGoogle Scholar
Chang, L.L.Y., Howie, R.A. and Zussman, J. (1996) Rock-Forming Minerals, Non-Silicates: Sulphides, Carbonates, Phosphates, Halides. Vol. 5B 2ndedition, Longman Scientific, Harlow, Essex, UK, 383 pp.Google Scholar
Chave, K. (1954) Aspects of the biogeochemistry of magnesium 1. Journal of Geology, 62, 190192.Google Scholar
Clark, F.W. and Wheeler, W.C. (1922) The inorganic constituents of marine invertebrates. U.S. Geological Survey Professional Paper, 124, 62 pp.Google Scholar
Cohen, A. and McConnaughey, T.A. (2003) Geochemical perspectives on coral mineralization. Pp. 151188 in: Biomineralization (Dove, P.M. De Yoreo, J.J. and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Conca, J., Streitelmeier, E., Lu, N., Ware, S.D., Taylor, T.P., Kaszuba, J. and Wright, J. (2002) Treatability study of reactive materials to remediate groundwater contaminated with radionuclides, metals and nitrates in a four component permeable reactive barrier. Pp. 221252 in: Handbook of Groundwater Remediation using Permeable Reactive Barriers. Elsevier Science, USA.Google Scholar
Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides, 2nd edition. Wiley-VEH Weinheim, Germany.CrossRefGoogle Scholar
Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A.M., Marty, B. and Janney, P.E. (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science, 306, 20772080.CrossRefGoogle ScholarPubMed
De Vrind-de Jong, E.W., Borman, A.H., Thierry, R., Westbroek, P., Cruter, M. and Kanerling, J.P. (1986) Calcification in the coccolithophorids Emeliana huxleyi and Pleurochrysis caterae II Biochemical aspects. Pp. 205217 in: Biomineralization in Lower Plants and Animals (Leadbeater, B.S.C and Riding, B., editors). Clarendon Press, Oxford.Google Scholar
Dogan, A.U., Dogan, M., Chan, D.C.N. and Wurster, D.E. (2005) Bassanite from Salvadora Persica: a new evaporate biomineral. Carbonates and Evaporites, 20, 27.CrossRefGoogle Scholar
Dong, H., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., Kukkadapu, P.K. and Onstott, T.C. (2000) Mineral transformations associated with the microbial reduction of magnetite. Chemical Geology, 169, 299318.CrossRefGoogle Scholar
Dove, P.M., De Yoreo, J.J. and Weiner, S. (editors) (2003) Biomineralization. Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Driessens, F.C.M. and Verbeeck, R.M.H. (1990) Biominerals. CRC Press, Boca Raton, Florida.Google Scholar
Driessens, F.C.M., Verbeeck, R.M.H. and Heuligers, H.J.M. (1983) Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorganica Chimica Acta, 80, 1923.CrossRefGoogle Scholar
Ducy, P., Schinke, T. and Karsenty, G. (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289, 15011504.CrossRefGoogle ScholarPubMed
Ehrlich, H.L. (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal, 16, 135154.CrossRefGoogle Scholar
Ehrlich, H.L. (2002) Geobiomineralization. Marcel Dekker, Inc., New York.Google Scholar
Elliott, J.C. (1994) Structures and Chemistry of the Apatites and other Calcium Phosphates. Elsevier, Amsterdam, Holland.Google Scholar
Erez, J. (2003) The source of ions for biomineralization in Foraminifera and their implications for paleoceanographic proxies. Pp. 115150 in: Biomineralization (Dove, P.M., De Yoreo, J.J. and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Folk, R.L., Kirkland, B.L., Rodgers, J.C, Rodgers, G.P., Rasmussen, T.E., Liske, C., Charlesworth, J.E., Severson, S.R. and Miller, V.M. (2001) Precipitation of minerals in human arterial plaque; the potential role of nannobacteria. Abstract, Geological Society of America annual meetings 33, (6) p. 189.Google Scholar
Fortin, D. and Beveridge, T.J. (1997) Microbial sulfate reduction within sulfidic mine tailings: formation of diagenetic Fe-sulfides. Geomicrobiology Journal, 14, 121.Google Scholar
Frankel, R.B. and Bazylinski, D.A. (2003) Biologically controlled mineralization in prokaryotes. Pp. 95114 in: Biomineralization (Dove, P.M., De Yoreo, J.J. and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Frankel, R.B., Bazylinski, D.A., Johnson, M. and Taylor, B.L. (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal, 73, 9941000.CrossRefGoogle ScholarPubMed
Freke, A.M. and Tate, D. (1961) The formation of magnetic iron sulfide by bacterial reduction of iron solutions. Journal of Biochemical and Microbiological Technology and Engineering, 3, 2939.CrossRefGoogle Scholar
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosensweig, A. (1997) Dana's New Mineralogy. John Wiley & Sons, New York.Google Scholar
Gast, R.J. and Caron, D.A. (1996) Molecular phylogeny of symbiotic dinoflagellates from plankton foraminifera and radiolaria. Molecular Biology and Evolution, 13, 11921197.CrossRefGoogle ScholarPubMed
Ghiorse, W.C. and Ehrlich, H.L. (1992) Microbial biomineralization of iron and manganese. Pp. 7599 in: Biomineralization: Processes of Iron and Manganese — Modern and Ancient Environments (Skinner, H.C.W. and Fitzpatrick, R.W., editors). CATENA Suppl 21 Catena-Verlag, Cremlingen-Destedt, Germany.Google Scholar
Gorby, Y.A. (1989) Regulation of magnetosome biogenesis by oxygen and nitrogen. PhD thesis, University of New Hampshire, Durham, New Hampshire, USA.Google Scholar
Grossman, E.L. (1987) Stable isotopes in modern benthic foraminifera — a study of vital effect. Journal of Foraminiferal Research, 17, 4861.CrossRefGoogle Scholar
Gulbrandsen, R.A. (1966) Chemical composition of phosphorites in the Phosphoria Formation. Geochimica et Cosmochimica Acta, 30, 769778.CrossRefGoogle Scholar
Haack, E.A. and Warren, L.A. (2003) Biofilm hydrous manganese oxyhydroxides and metal dynamics of acid rock drainage. Environmental Science and Technology, 37, 41384147.CrossRefGoogle ScholarPubMed
Halstead, L.H (1974) Vertebrate Hard Tissues. Wykeman Publications, Science Series, London.Google Scholar
Hanzlik, M.M., Petersen, N., Keller, R. and Schmidbauer, E. (1996) Electron microscopy and 57Fe Mossbauer spectra of 10 run particles intermediate in composition between Fe3O4 and γ-Fe2O3 produced by bacteria. Geophysical Research Letters, 23, 479482.CrossRefGoogle Scholar
Hoppe, K.A., Koch, P.L. and Furutani, T.T. (2003) Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology, 13, 2028.CrossRefGoogle Scholar
Ikoma, T., Yamazaki, A., Nakamura, S. and Akao, M. (1999) Preparation and structure refinement of monoclinic hydroxyapatite. Journal of Solid State Chemistry, 144, 272276.CrossRefGoogle Scholar
Johnston, C.C. Jr, Slemenda, C.W. and Melton, L.J., III (1996) Bone density measurement and management of osteoporosis. Pp. 142151 in: Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism, 3rd edition (Favus, M.J., editor). Lippincott-Raven Publishers, Philadelphia.Google Scholar
Kinsman, D.J.J. (1969) Interpretation of Sr2+ concentrations in carbonate minerals and rocks. Journal of Sedimentary Petrology, 39, 486508.Google Scholar
Loeblich, A.R. Jr. and Tappen, H. (1987) Foraminiferal Genera and their Classification. Van Nostrand Reinhold Co., New York.Google Scholar
Lovley, D.R. (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiology, 5, 375399.CrossRefGoogle Scholar
Lovley, D.R., Badaebaker, M.J. Lonergan, D.J., Cozzarelli, I.M. Phillips, E.J.P. and Siegel, D.I. (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339, 297299.CrossRefGoogle Scholar
Lowenstam, H. (1961) Mineralogy, O16/O18 and strontium and magnesium content of recent and fossil brachiopods and their bearing on the history of the oceans. Journal of Geology, 69, 241260.CrossRefGoogle Scholar
Lowenstam, H. (1964) Coexisting calcites and aragonite from the skeletal carbonates of marine organisms and their strontium and magnesium contents. Pp. 373404 in: Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry (Miyake, Y. and Koyama, T., editors). Maruzeb Co Ltd, Tokyo.Google Scholar
Lowenstam, H. and Weiner, S. (1989) On Biomineralization. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Mann, H., Tazaki, K., Fyfe, W.S. and Kerrich, R. (1992) Microbial accumulation of iron and manganese in different aquatic environments: an electron optical study. Pp. 115131 in: Biomineralization: Processes of Iron and Manganese — Modern and Ancient Environments (Skinner, H.C.W. and Fitzpatrick, R.W., editors). CATENA Suppl 21 Catena-Verlag, Cremlingen-Destedt, Germany.Google Scholar
Mann, S. (1988) Molecular recognition in biomineralization. Nature, 332, 119124.CrossRefGoogle Scholar
Mann, S. (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, UK.Google Scholar
Mann, S. and Frankel, R.B. (1989) Magnetite biomineralization in unicellular organisms. Pp. 389426 in: Biomineralization: Chemical and Biological Perspectives (Mann, S., Webb, J. and Williams, R.J.P., editors) VCH Verlaggesellschaft, Weinheim, Germany.Google Scholar
Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A. and Jannasch, H.W. (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258260.CrossRefGoogle Scholar
McConnell, D. (1970) Crystal chemistry of bone mineral: Hydrated carbonate apatites. American Mineralogist, 55, 16591669.Google Scholar
McConnell, D. (1973) Apatite: its Crystal Chemistry, Mineralogy, Utilization and Geologic and Biologic Occurrences. Springer-Verlag, New York.CrossRefGoogle Scholar
Nickel, E. (1995) The definition of a mineral. The Canadian Mineralogist, 33, 689690.Google Scholar
Pasteris, J.D., Wopenka, B., Freeman, J.J., Rogers, K., Valsami-Jones, E., van der Houwen, J.A.M. and Silva, M.J. (2004) Lack of OH in nano-crystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials, 25, 229238.CrossRefGoogle Scholar
Pentecost, A. and Riding, R. (1986) Calcification in cyanobacteria. Pp. 7390 in: Biomineralization in Lower Plants and Animals (Leadbeater, B.S.C. and Riding, R., editors) Clarendon Press, Oxford, UK.Google Scholar
Pilkey, O.H. and Hower, J. (1960) The effect of environment on the concentration of skeletal magnesium and strontium in. Dendraster. Journal of Geology, 68, 203216.CrossRefGoogle Scholar
Politi, Y., Arad, T., Klein, E., Weiner, S. and Addadi, L. (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306, 11611164.CrossRefGoogle Scholar
Posfai, M., Busek, P.R., Bazylinski, D.A. and Frankel, R.B. (1998) Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. American Mineralogist, 83, 14691481.CrossRefGoogle Scholar
Rasmusen, H. and Bordier, P. (1974) The Physiological and Cellular Basis of Metabolic Bone Disease. Williams and Wilkins, Baltimore, Maryland.Google Scholar
Reis, J. (2004) Effect of ambient Mg/Ca ratio on magnesium fractionation in calcareous marine invertebrates, a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology, 11, 981984.CrossRefGoogle Scholar
Rickard, D.T. (1969) The microbiological formation of iron sulfides. Stockholm Contributions to Geology, 20, 5066.Google Scholar
Rink, W.J. and Schwarcz, H.P. (1995) Tests for diagenesis in tooth enamel-ESR dating signals and carbonate contents. Journal of Archaeological Science, 22, 251255.CrossRefGoogle Scholar
Roe, J.E., Anbar, A.D. and Barling, J. (2003) Non-biological fractionation of Fe isotopes: evidence of an equilibrium isotope effect. Chemical Geology, 195, 6985.CrossRefGoogle Scholar
Roh, Y., Lauf, R.J., McMillan, A.D., Zhang, C., Rawn, C.J., Bai, J. and Phelps, T.J. (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Communications, 110, 529534.CrossRefGoogle Scholar
Schulz, E., Arfai, K., Liu, X.D., Sayre, J. and Gilsanz, V. (2004) Aortic calcification and the risk of osteoporosis and fractures. Journal of Clinical Endocrinology and Metabolism, 89, 42464253.CrossRefGoogle ScholarPubMed
Schwertmann, U. and Fitzpatrick, R.W. (1992) Iron minerals in surface environments. Pp. 730 in: Biomineralization: Processes of Iron and Manganese — Modern and Ancient Environments (Skinner, H.C.W. and Fitzpatrick, R.W., editors). CATENA Supplement 21 Catena-Verlag, Cremlingen-Destedt, Germany.Google Scholar
Skinner, H.C.W. (1973) Studies in the basic mineralizing system CaO-P2O5-H2O. Calcified Tissue Research, 14, 314.CrossRefGoogle Scholar
Skinner, H.C.W. (1979) Bone: cellular and molecular organizatio. Pp. 105134 in: The Scientific Basis of Orthopaedics (Albright, J.A. and Brand, R., editors). Appleton-Century-Crofts, New York.Google Scholar
Skinner, H.C.W. (1989) Low temperature carbonate phosphate materials or the carbonate-apatite problem: a review. Pp. 251264 in: Origin, Evolution and Modern Aspects of Biomineralization in Plant and Animals (Crick, E., editor). Plenum Press, New York.Google Scholar
Skinner, H.C.W. (2000a) In praise of phosphates or why vertebrates chose apatites to mineralize their skeletons. International Geology Review, 42, 232240Google Scholar
Skinner, H.C.W. (2000b) Minerals and Human Health.. Pp. 383412 in: Environmental Mineralogy (Vaughan, D.J. and Wogelius, R.A., editors). EMU Notes in Mineralogy, 2. Eötvös University Press, Budapest.Google Scholar
Skinner, H.C.W. (2005) Mineralogy of bone. Pp. 667693 in: Essentials of Medical Geology (Sellinus, O., editor). Elsevier, New York.Google Scholar
Skinner, H.C.W. and Fitzpatrick, R.W. (editors) (1992) Biomineralization, Processes of Iron and Manganese — Modern and Ancient Environments. Catena Supplement 21, CATENA Verlag, Cremlingen-Destedt, Germany.Google Scholar
Skinner, H.C.W. and Jahren, A.H. (2004) Biomineralization. Pp. 118184 in: Biogeochemisty, Treatise on Geochemistry, vol. 8 (Schlesinger, W., editor). Elsevier, New York.Google Scholar
Skinner, H.C.W., Kempner, E.S. and Pak, C.Y.C. (1972) Preparation of the mineral phase of bone using ethylenediamine extraction. Calcified Tissue Research, 10, 257268.CrossRefGoogle ScholarPubMed
Skinner, H.C.W., Nicolescu, S. and Raub, T.D. (2004) A tale of two apatites. Pp. 283288 in: Environment and Progress (Petrescu, I., editor). Editura Fundatiel de Studii Europene, Cluj-Napoca, Romania.Google Scholar
Stanley, S.M., Reis, J.B. and Hardie, L.A. (2002) Low magnesian calcites produced by coralline algae in sea water of late Cretaceous composition. National Academy of Science Proceedings, 99, 1532315326.CrossRefGoogle Scholar
Stoltz, J.F. (1992) Magnetotactic bacteria: biomineralization, ecology, sediment magnetism, environmental indicator. Pp. 133146 in: Biomineralization: Processes of Iron and Manganese — Modern and Ancient Environments (Skinner, H.C.W. and Fitzpatrick, R.W., editors). CATENA Suppl 21 Catena-Verlag, Cremlingen-Destedt, Germany.Google Scholar
Teitelbaum, S. (2000) Bone resorption by osteoclasts. Science, 289, 15041507.CrossRefGoogle ScholarPubMed
Templeton, A.S., Trainor, T.P., Spormann, A., Newvill, M., Sutton, S.R., Dohnalkova, A., Gorby, Y. and Brown, G.E. Jr. (2003) Sorption versus biomineralization of Pb(II) within Burholderia cepacia biofilms. Environmental Science and Technology, 37, 300307.CrossRefGoogle Scholar
Towe, K. M. and Moench, T.T. (1981) Electron-optical characterization of bacterial magnetite. Earih and Planetary Science Letters, 52, 213220.CrossRefGoogle Scholar
Veizer, J. (1983) Trace elements and stable isotopes in sedimentary carbonates. Pp. 368399 in: Carbonate Mineralogy and Chemistry (Reeder, R.J., editor). Reviews in Mineralogy, 11, Mineralogical Society of America, Washington, D.C.Google Scholar
Visscher, P.T., Reid, R.P. and Bebout, B.M. (1998) Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919922.2.0.CO;2>CrossRefGoogle Scholar
Waychunas, G.A. (1991) Crystal chemistry of oxides and oxyhydroxides. Pp. 1168 in: Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D.H., editor). Reviews in Mineralogy 25, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Westbroek, P., van der Wai, P., van Emburg, P.R. , de Vrind-de Jong, E.W. and Bruijn, W.C. (1986) Calcification in coccolithophorids Emiliana huxleyi and Pleurochrysis caterae. I Ultrastructural aspects. Pp. 189204 in: Biomineralization in Lower Plants and Animals (Leadbeater, B.S.C. and Riding, B., editors). Clarendon Press, Oxford, UK.Google Scholar
Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B. (1993) Ferrous oxidation by anoxygenic phototrophic bacteria. Nature, 362, 834836.CrossRefGoogle Scholar
Wilbur, K.M. and Watanabe, N. (1963) Experimental studies on calcification in molluscs and the alg. Coccolithus huxleyi. Annals of the New York Academy of Science, 109, 82112.CrossRefGoogle Scholar
Wright, D.T. (1999) The role of sulfate producing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, S. Australia. Sedimentary Geology, 126, 147157.CrossRefGoogle Scholar
Young, J.R. and Henrickson, K. (2003) Biomineralization within vesicles: the calcite of coccoliths. Pp. 189216 in: Biomineralization (Dove, P.M., De Yoreo, J.J. and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54, Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Zapanta-Le Geros, R. (1965) Effect of carbonate on the lattice parameters of apatite. Nature, 206, 403404.CrossRefGoogle Scholar
Zipkin, I. (1970) Inorganic composition of bone. Pp. 69104 in: Biological Calcification: Cellular and Molecular Aspects (Schraer, H., editor). North-Holland Pub. Co.CrossRefGoogle Scholar