Article contents
Fox coloured knots and triangulations of $S^{3}$
Published online by Cambridge University Press: 01 December 2006
Abstract
We give a constructive proof of a Theorem of Izmestiev and Joswig. Namely, given $(L,\omega)$ where $L$ is a link in $S^{3}$ and $\omega$ a simple (not necessarily transitive) representation of $\pi_{1}(S^{3}\backslash L)$ onto the symmetric group $\Sigma_{4}$ of four elements $\{1,2,3,4\}$ we construct a triangulation of $S^{3}$ giving rise to $(L,\omega)$ in a natural way.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 141 , Issue 3 , November 2006 , pp. 443 - 463
- Copyright
- © 2006 Cambridge Philosophical Society
- 1
- Cited by