Article contents
Brill–Noether theory for vector bundles on projective curves
Published online by Cambridge University Press: 01 November 1998
Abstract
In this paper we will study the Brill–Noether theory of vector bundles on a smooth projective curve X. As usual in papers on this topic we are mainly interested in stable or at least semistable bundles. Let Wkr, d(X) be the scheme of all stable vector bundles E on X with rank (E)=r, deg (E)=d and h0(X, E)[ges ]k+1. For a survey of the main known results, see the introduction of [6]. The referee has pointed out that the results in [6] were improved by V. Mercat in [14]; he proved that Wkr, d(X) is non-empty for d<2r if and only if k+1[les ]r+(d−r)/g. If X has general moduli the more interesting existence theorem was proved in [19]. However, in this paper we are mainly interested in very special curves X, e.g. the hyperelliptic or the bielliptic curves. We work over an algebraically closed base field K. In Section 5 we will assume char (K)=0. In Section 1 we will give some theorems of Clifford's type. In Section 2 we will construct several stable bundles with certain properties. Here the main tool is an operation (the +elementary transformation) which sends a vector bundle E on X to another vector bundle E′ with rank (E′)=rank (E) and deg (E′)=deg (E)+1 (see Section 2 for its definition and its elementary properties). Using the +elementary transformations in Section 3 we will prove the following existence theorem which covers the case of a ‘small’ number of sections.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 124 , Issue 3 , November 1998 , pp. 483 - 499
- Copyright
- © Cambridge Philosophical Society 1998
- 10
- Cited by