Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T16:50:44.107Z Has data issue: false hasContentIssue false

Simulation of proton radiography terminal at the Institute of Modern Physics

Published online by Cambridge University Press:  20 May 2015

Yan Yan
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Lina Sheng*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Zhiwu Huang
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Jie Wang
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Zeen Yao*
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Junrun Wang
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Zheng Wei
Affiliation:
School of Nuclear Science and Technology, Lanzhou University, Gansu, China
Jiancheng Yang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Youjin Yuan
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
*
Address correspondence and reprint requests to: Lina Sheng, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China. E-mail: shenglina@impcas.ac.cn; Zeen Yao, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China. E-mail: zeyao@lzu.edu.cn.
Address correspondence and reprint requests to: Lina Sheng, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China. E-mail: shenglina@impcas.ac.cn; Zeen Yao, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China. E-mail: zeyao@lzu.edu.cn.

Abstract

Proton radiography is used for advanced hydrotesting as a new type radiography technology due to its powerful penetration capability and high detection efficiency. A new proton radiography terminal will be developed to radiograph static samples at the Institute of Modern Physics of Chinese Academy of Science. The proton beam with the maximum energy of 2.6 GeV will be produced by Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring. The proton radiography terminal consists of the matching magnetic lens and the Zumbro lens system. In this paper, the design scheme and all optic parameters of this beam terminal for 2.6 GeV proton energy are presented by simulating the beam optics using WINAGILE code. My-BOC code is used to test the particle tracking of proton radiography beam line. Geant4 and G4beamline codes are used for simulating the proton radiography system. The results show that the transmission efficiency of proton without target is 100%, and the effect of secondary particles can be neglected. To test this proton radiography system, the proton images for an aluminum plate sample with two rectangular orifices and a step brass plate sample are respectively simulated using Geant4 code. The results show that the best spatial resolution is about 36 μm, and the differences of the thickness are not >10%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Aroujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell'Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Cadenas, J.J.G., Gonzalez, I., Abril, G.G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampen, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O'Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H. & Zschiesche, D. (2003). Geant4–a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250303.CrossRefGoogle Scholar
Antipov, Y.M., Afonin, A.G., Vasilevskii, A.V., Gusev, I.A., Demyanchuk, V.I., Zyat'kov, O.V., Ignashin, N.A., Karshev, Y.G., Larionov, A.V., Maksimov, A.V., Matyushin, A.A., Minchenko, A.V., Minkeev, M.S., Mirgorodskii, V.A., Peleshko, V.N., Rud'ko, V.D., Terekhov, V.I., Tyurin, N.E., Fedotov, Y.S., Trutnev, Y.A., Burtsev, V.V., Volkov, A.A., Ivanin, I.A., Kartanov, S.A., Kuropatkin, Y.P., Mikhailov, A.L., Mikhailyukov, K.L., Oreshkov, O.V., Rudnev, A.V., Spirov, G.M., Syrunin, M.A., Tatsenko, M.V., Tkachenko, I.A. & Khramov, I.V. (2010). A radiographic facility for the 70-GeV proton accelerator of the institute for high energy physics. Instrum. Exp. Tech. 53, 319326.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography of diagnosis ICF-relevant plasmas. Laser Part. Beams 28, 277284.CrossRefGoogle Scholar
Bryant, P.J. (2000). Agile, a tool for interactive lattice design. Proc. of EPAC, pp. 1357–1359. Vienna, Austria.Google Scholar
Cookson, J.A., Armitage, B.H. & Ferguson, A.T.G. (1972). Proton radiography. Non-Destr. Test. 5, 225228.CrossRefGoogle Scholar
King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopes, R.R., McDonald, T.E., McClelland, J.B., Merril, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E. Jr., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J. & Ziock, H.J. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Methods Phys. Res. A 424, 8491.CrossRefGoogle Scholar
Koehler, A.M. (1968). Proton radiography. Science 160, 303304.CrossRefGoogle ScholarPubMed
Kolesnikov, S.A., Golubev, A.A., Demidov, V.S., Dudin, S.V., Kantsyrev, A.V., Mintsev, V.B., Smirnov, G.N., Turtikov, V.I., Utkin, A.V., Sharkov, B.Y. & Fortov, V.E. (2010). Application of charged particle beams of TWAC-ITEP accelerator for diagnostics of high dynamic pressure processes. High Press. Res. 30, 8387.CrossRefGoogle Scholar
Mottershead, C.T. & Zumbro, J.D. (1998). Magnetic optics for proton radiography. In proceedings of the 1997 Particle Accelerator Conference. Vancouver, 1397–1399.CrossRefGoogle Scholar
Merrill, F.E., Golubev, A.A., Mariam, F.G., Turtikov, V.I. & Varentsov, D. (2009). Proton microscopy at FAIR. Shock Compression Condens. Matter 1195, 667.Google Scholar
Morris, C.L., Ables, E., Alrick, K.R., Aufderheide, M.B., Barnes, P.D. Jr., Buescher, K.L., Cagliostro, D.J., Clark, D.A., Clark, D.J., Espinoza, C.J., Ferm, E.N., Gallegos, R.A., Gardner, S.D., Gomez, J.J., Greene, G.A., Hanson, A., Hartouni, E.P., Hogan, G.E., King, N.S.P., Kwiatkowski, K., Liljestrand, R.P., Mariam, F.G., Merrill, F.E., Morgan, D.V., Morley, K.B., Mottershead, C.T., Murray, M.M., Pazuchanics, P.D., Pearson, J.E., Sarracino, J.S., Saunders, A., Scaduto, J., Schach von Wittenau, A.E., Soltz, R.A., Sterbenz, S., Thompson, R.T., Vixie, K., Wilke, M.D., Wright, D.M. & Zumbro, J.D. (2011). Flash radiography with 24 GeV/c protons. J. Appl. Phys. 109, 104905.CrossRefGoogle Scholar
Roberts, T.J., Beard, K.B., Ahmed, S., Huang, D. & Kaplan, D.M. (2011). G4Beamline particle tracking in matter dominated beam lines. Proc. of 2011 on Particle Accelerator Conf., New York. MOP152, pp. 373–375.Google Scholar
Sheng, L.N., Zhao, Y.T., Yang, G.J., Wei, T., Jiang, X.G., Zhou, X.M., Cheng, R., Yan, Y., Li, P., Yang, J.C., Yuan, Y.J., Xia, J.W. & Xiao, G.Q. (2014). Heavy-ion radiography facility at Institute of Modern Physics. Laser Part. Beams 32, 651655.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Varentsov, D., Hoffmann, D.H.H., Spiller, P., Lomonosov, I., Wieser, J., Jacoby, J. & Fortov, V.E. (2002). High-energy-density matter research at GSI Darmstadt using intense heavy ion beams. Laser Part. Beams 20, 393397.CrossRefGoogle Scholar
Tsai, Y. (1974). Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815.CrossRefGoogle Scholar
West, D. & Sherwood, A.C. (1972). Radiography with 160 MeV protons. Nature 239, 157759.CrossRefGoogle ScholarPubMed
Wohl, C.G. (1984). Review of particle properties. Rev. Mod. Phys. 56, S50.CrossRefGoogle Scholar
Xu, H.B. (2006). Measurement of areal density and its uncertainty in high-energy proton radiography. High Power Laser Part. Beams 18, 477482. (in Chinese).Google Scholar
Zhang, Z., Yang, G.J. & Lv, J.Q. (2010). Lie algebraic analysis and simulation of high-current pulsed beam transport in a solenoidal lens. Chin. Phys. C 34, 134137.Google Scholar
Zhao, Y.T. (2011). Plans for Proton/Ion Radiography at IMP. http://www-aix.gsi.de/conferences/HEPM2009/talks/HEPM-2009-Zhao.pdfGoogle Scholar
Zhao, Y.T., Hu, Z.H., Cheng, R., Wang, Y.Y., Peng, H.B., Golubev, A., Zhang, X.A., Lu, X., Zhang, D.C., Zhou, X.M., Wang, X., Xu, G., Ren, J.R., Li, Y.F., Lei, Y., Sun, Y.B., Zhao, J.T., Wang, T.S., Wang, Y.N. & Xiao, G.Q. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.CrossRefGoogle Scholar
Ziock, H.J., Adams, K.J., Alrick, K.R., Amann, J.F., Boissevain, J.G., Crow, M.L., Cushing, S.B., Eddleman, J.C., Espinoza, C.J., Fife, T.T., Gallegos, R.A., Gomez, J., Gorman, T.J., Gray, N.T., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., King, N.S.P., Knudson, J.N., London, R.K., Lopez, R.P., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Mottershead, C.T., Mueller, K.L. Jr., Neri, F.A., Numkena, D.M., Pazuchanics, P.D., Pillai, C., Prael, R.E., Riedel, C.M., Sarracino, J.S., Stacy, H.L., Takala, B.E., Thiessen, H.A., Tucker, H.E., Walstrom, P.L., Yates, G.J., Zumbro, J.D., Ables, E., Aufderheide, M.B., Barnes, P.D. Jr., Bionta, R.M., Fujino, D.H., Hartouni, E.P., Park, H.S., Soltz, R., Wright, D.M., Balzer, S., Flores, P.A., Thompson, R.T., Prigl, R., Scaduto, J., Schwaner, E.T., Saunders, A. & O'Donnell, J.M. (1998). The proton radiography concept. LA-UA-98-1368.Google Scholar