Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T05:55:45.150Z Has data issue: false hasContentIssue false

Low-temperature preparation of BaTiO3 thin films by intense, pulsed, ion beam evaporation

Published online by Cambridge University Press:  09 March 2009

T. Sonegawa
Affiliation:
Laboratory of Beam Technology, Nagaoka University of Technology, Nagaoka, Niigata, 940–21, Japan
C. Grigoriu
Affiliation:
Laboratory of Beam Technology, Nagaoka University of Technology, Nagaoka, Niigata, 940–21, Japan
K. Masugata
Affiliation:
Laboratory of Beam Technology, Nagaoka University of Technology, Nagaoka, Niigata, 940–21, Japan
K. Yatsui
Affiliation:
Laboratory of Beam Technology, Nagaoka University of Technology, Nagaoka, Niigata, 940–21, Japan

Abstract

Cubic barium titanate (BaTiO3) thin films have been prepared in situ, on a low-temperature substrate, Al/SiO2/Si(100), by intense, pulsed ion beam evaporation. We have first proposed a new deposition configuration, backside deposition, which, in comparison with standard frontside deposition, produces very smooth thin films, Rα (mean roughness) ≈ 3 ∼ 9 nm, without any droplets. There is no significant change of the dielectric constant in the frequency range of 10 ∼ 105 Hz. The dielectric constant for the film deposited at the substrate temperature of 200˚C is typically ∼90 at 1 kHz.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheng, H.F. et al. 1993 Jpn. J. Appl. Phys. 32, 5656.Google Scholar
Hayashi, T. et al. 1994 Jpn. J. Appl. Phys. 33, 5277.CrossRefGoogle Scholar
Ishibashi, H. et al. 1994 Jpn. J. Appl. Phys. 33, 4971.CrossRefGoogle Scholar
Johnston, G.P. et al. 1994. J. Appl. Phys. 76, 5949.CrossRefGoogle Scholar
Kang, X.D. et al. 1994a Jpn. J. Appl. Phys. 33, 1155.CrossRefGoogle Scholar
Kang, X.D. et al. 1994b Jpn. J. Appl. Phys. 33, L1041.Google Scholar
Kim, I.T. et al. 1994 Jpn. J. Appl. Phys. 33, 5125.CrossRefGoogle Scholar
Nose, T. et al. 1994 Jpn. J. Appl. Phys. 33, 5259.CrossRefGoogle Scholar
Shi, Z.Q. et al. 1992 J. Vac. Sci. & Technol. A10, 733.CrossRefGoogle Scholar
Shimotori, Y. et al. 1988 J. Appl. Phys. 63, 968.CrossRefGoogle Scholar
Shimotori, Y. et al. 1989 Jpn. J. Appl. Phys. 28, 468.CrossRefGoogle Scholar
Tokuchi, A. et al. 1986 In Proc. 2nd Int'l Top. Symp. Inertial Confinement Fusion Res. by High-Power Particle Beams, Yatsui, K. ed., (Lab. of Beam Tech., Nagaoka Univ. of Tech.), p. 430.Google Scholar
Yatsui, K. 1989 Laser and Part. Beams 7, 733.CrossRefGoogle Scholar
Yatsui, K. et al. 1992 Laser Interaction and Related Plasma Phenomena (Plenum Press, New York) p. 567.CrossRefGoogle Scholar
Yatsui, K. et al. 1994 Phys. Plasmas 1, 1730.CrossRefGoogle Scholar
Yatsui, K. et al. 1995 Appl. Phys. Lett. 67, 1214.CrossRefGoogle Scholar