Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T21:30:27.594Z Has data issue: false hasContentIssue false

Ionospheric accelerator

Published online by Cambridge University Press:  09 March 2009

T. Tajima
Affiliation:
Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712
W. Horton
Affiliation:
Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712
S. Nishikawa
Affiliation:
School Education Center, University of Tsukuba, Ohtsuka, Tokyo 112Japan
T. Nishikawa
Affiliation:
National Laboratory for High Energy Physics, Tsukuba, Ibaraki 305 Japan

Abstract

Ionospheric acceleration of high energy particles by a short wavelength microwave pulse is discussed. The intense electromagnetic waves in an ionospheric (F2) or magnetospheric plasma can be self-trapped above a threshold power. The self-binding property and the consequent self-induced transparency of the triple soliton structure of two electromagnetic waves and a plasma wave allow the propagation of an intense electromagnetic pulse without the severe and wasteful distortion that accompanies low power pulse propagation. The effects of magnetospheric fluctuations on the particle beam transport are considered. The fluctuation-induced transport seems to be within the margin of tolerance for useful beam transport. Orbits of negatively charged particles are stable. While synchrotron radiation loss for electrons is prohibitive, that of muons and antiprotons is negligible. A corresponding terrestrial application is also suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akasofu, S.-I. 1981 Space Sci. Rev. 28, 121.CrossRefGoogle Scholar
Ashour–Abdalla, M. et al. 1981 Phys. Rev. A23, 1906.Google Scholar
Barnes, D. C., Kurki–Suonio, T. & Tajima, T. 1987 IEEE Trans. Plasma Sci. PS15, 154.Google Scholar
Cambell, W. H. 1967Physics of Geomagnetic Phenomena’ Vol. 2, 821.Google Scholar
Himel, T. & Siegriet, J. 1985 in Proc. Second Int.Workshop on Laser Acceleration of Particles(AIP, New York) AIP conf. Proc. 130, p. 602.Google Scholar
Hofstadter, R. 1968 HEPL report 560.Google Scholar
Horton, W. & Tajima, T. 1986 Phys. Rev. A34, 4110.CrossRefGoogle Scholar
Mima, K. et al. 1986 Phys. Rev. Lett. 57, 1421.Google Scholar
McCall, S. L. & Hahn, E. L. 1969 Phys. Rev. 182, 457.Google Scholar
Nishikawa, T. 1960 in ‘Lectures on Nuclear Physics’, Vol. 6, Accelerators ed. Kumagaya, H. (Kyoritsu, Tokyo) p. 105 (in Japanese).Google Scholar
Nishikawa, T. 1982 J. Phys. (Paris) 43, Suppl. C3–630 eds. Petian, P. & Porneuf, M.Google Scholar
Nozaki, K. & Taniuti, T. 1973 J. Phys. Soc. Jpn. 34, 796.Google Scholar
Obayashi, T. 1958 Ann. Geophys 14, 464.Google Scholar
Obayashi, T. 1970Solar Terrestrial Physics’ (Syokabo, Tokyo).Google Scholar
Rostoker, G. 1980 J. Geomag, Geoelectr 32, 431.CrossRefGoogle Scholar
Saito, T. 1961 Space Sci. Rev. 10, 319.Google Scholar
Schmidt, G. & Horton, W. 1985 Comments Plasma Phys. Controll. Fus. 9, 85.Google Scholar
Tajima, T. 1983 Proc. 12th International Conference High–Energy Accelerators, eds., Cole, F. T. & Donaldson, R. (Fermi National Accelerator Lab., Batavia) p. 470.Google Scholar
Tajima, T. 1985 Laser Part. Beam 3, 351.Google Scholar
Tajima, T. & Cavenago, M. 1987 Phys. Rev. Lett. 59, 1440.Google Scholar
Tajima, T. & Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.Google Scholar
Tang, C. M., Sprangle, P. & Esarey, E. 1987 IEEE Trans. Plasma Sci. PS15, 145.Google Scholar