Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T10:38:33.997Z Has data issue: false hasContentIssue false

The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Acores: survival at the edge

Published online by Cambridge University Press:  20 November 2015

Brian Morton*
Affiliation:
School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
*
Correspondence should be addressed to:B. Morton, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China email: prof_bmorton@hotmail.co.uk

Abstract

This is the first comprehensive anatomical study of a representative of the septibranch Cuspidariidae. Particular interest in Cardiomya costellata is related to the fact that only two species of such predatory septibranchs have been recorded from the remote Açorean Archipelago and, here, individuals of both taxa are half the shell length of conspecifics throughout the species’ North-eastern Atlantic range. The shell of C. costellata is thin, fragile and rostrate. This latter attribute allows the inhalant siphon (as in other cuspidarioids) to be extended towards potential prey to effect their capture. How this extension is effected has been described but, herein, the hydrodynamic forces needed to achieve this are put into a firmer anatomical context. Uniquely amongst the Anomalesmata, cuspidarioids have, previously, been regarded as dioecious. This is not the case for C. costellata, which is a protandric consecutive hermaphrodite. The gonads and reproductive strategy of this species are compared with those of the spheniopsid Grippina coronata that is representative of a second cuspidarioid family of deeper water predators and which is a simultaneous hermaphrodite brooding self-fertilized embryos in the gonadial follicles with their release being post mortem. Some evidence suggests that in the Açores, the possible crustacean prey of C. costellata are also smaller than their mainland conspecifics, which, when viewed in the overall context of the predator's biology and anatomy, might explain its poor success in the oligotrophic waters of these mid-Atlantic islands.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.A. (2008) Bivalvia of the deep Atlantic. Malacologia 50, 57173.Google Scholar
Allen, J.A. and Morgan, R.E. (1981) The functional morphology of Atlantic deep water species of the families Cuspidariidae and Poromyidae (Bivalvia): an analysis of the evolution of the septibranch condition. Philosophical Transactions of the Royal Society of London Series B 294, 413546.Google Scholar
Allen, J.A. and Turner, J.F. (1974) On the functional morphology of the family Verticordiidae (Bivalvia) with descriptions of new species from the abyssal Atlantic. Philosophical Transactions of the Royal Society of London Series B 268, 401520.Google Scholar
Bernard, F.R. (1974) Septibranchs of the eastern Pacific (Bivalvia Anomalodesmata). Allan Hancock Monographs in Marine Biology 8, 1279.Google Scholar
Campos, B.M. and Ramorino, L.M. (1981) Huevo, larvas y postlarva de Entodesma cuneata (Gray, 1828) (Bivalvia: Pandoracea: Lyonsiidae). Revista de Biologia Marina y Oceanografia, Institute de Oceanologia, University of Valparaiso 17, 229251.Google Scholar
Grobben, C. (1892) Beitrage zur Kenntniss des Baues von Cuspidaria (Neœra) cuspidata Olivi, etc. Arbeiten aus des Zoologischen Instituten der Universität Wien 10, 101146.Google Scholar
Halton, D.W. and Owen, G. (1968) The fine structure and histochemistry of the gastric cuticle of the protobranchiate bivalve Nucula sulcata Bronn. Journal of Molluscan Studies 38, 7181.Google Scholar
Knudsen, J. (1967) The deep-sea Bivalvia. John Murray Expedition, 1933–1934 11, 235346.Google Scholar
Knudsen, J. (1970) The systematics and biology of abyssal and hadal Bivalvia. Galathea Report 11, 1241 + plates I–XX.Google Scholar
Krylova, H.M. (1993) Bivalve molluscs of the genus Bathyneaera (Septibranchia, Cuspidariidae) of the world oceans. Ruthenica 3, 5159.Google Scholar
Krylova, H.M. (1994) Clams of the genus Octoporia (Septibranchia: Halonymphidae) in the world oceans. Zoologicheskii zhurnal 73, 3845. [In Russian].Google Scholar
Krylova, H.M. (1995) Clams of the family Protocuspidariidae (Septibranchia, Cuspidarioidea): taxonomy and distribution. Zoologicheskii zhurnal 74, 2036. [In Russian].Google Scholar
Martins, A.M.F., Ávila, S., Borges, J.P., Madeira, P. and Morton, B. (2009) Illustrated checklist of the infralittoral molluscs off Vila Franco do Campo. In Martins, A.M.F. (ed.) The marine fauna and flora of the Azores (Proceedings of the Third International Workshop of Malacology and Marine Biology, São Miguel 2006). Açoreana Supplement 6, 15–103.Google Scholar
McQuiston, R.W. (1970) Fine structure of the gastric shield in the lamellibranch bivalve Lasaea rubra (Montagu). Journal of Molluscan Studies 39, 6975.Google Scholar
Morton, B. (1969) Studies on the biology of Dreissena polymorpha Pall (I). General anatomy and morphology. Proceedings of the Malacological Society of London 38, 301321.Google Scholar
Morton, B. (1973) The biology and functional morphology of Laternula truncata (Lamarck 1818) (Bivalvia: Anomalodesmata: Pandoracea). Biological Bulletin 145, 509531.Google Scholar
Morton, B. (1981a) The Anomalodesmata. Malacologia 21, 3560.Google Scholar
Morton, B. (1981b) Prey capture in the carnivorous “septibranch” Poromya granulata (Bivalvia: Anomalodesmata: Poromyacea). Sarsia 66, 241256.Google Scholar
Morton, B. (1981c) The mode of life and function of the shell buttress in Cucullaea concamerata (Martini) (Bivalvia: Arcacea). Journal of Conchology 30, 295301.Google Scholar
Morton, B. (1982) The functional morphology of Parilimya fragilis (Grieg, 1920) (Bivalvia: Parilimyidae nov. fam) with a discussion of the origin and evolution of the carnivorous septibranchs and a reclassification of the Anomalodesmata. Transactions of the Zoological Society of London 36, 153216.Google Scholar
Morton, B. (1984) Prey capture in Lyonsiella formosa (Bivalvia: Anomalodesmata: Verticordiacea). Pacific Science 38, 283297.Google Scholar
Morton, B. (1985a) Adaptive radiation in the Anomalodesmata. In Wilbur, K.M., Trueman, E.R. and Clarke, M. (eds) The Mollusca. Volume 10. Evolution. New York, NY: Academic Press, pp. 405459.Google Scholar
Morton, B. (1985b) Statocyst structure in the Anomalodesmata (Bivalvia). Journal of Zoology, London 206, 2334.Google Scholar
Morton, B. (1987) Siphon structure and prey capture as a guide to affinities in the abyssal septibranch Anomalodesmata (Bivalvia). Sarsia 72, 4969.CrossRefGoogle Scholar
Morton, B. (2003) The functional morphology of Bentholyonsia teramachii (Bivalvia: Lyonsiellidae): clues to the origin of predation in the deep water Anomalodesmata. Journal of Zoology, London 261, 363380.Google Scholar
Morton, B. (2007) The evolution of the watering pot shells (Bivalvia: Anomalodesmata: Clavagellidae and Penicillidae). Records of the Western Australian Museum 24, 1964.Google Scholar
Morton, B. (2012) The functional morphology and inferred biology of the enigmatic South African ‘quadrivalve’ bivalve Clistoconcha insignis Smith, 1910 (Thracioidea: Clistoconchidae fam. nov.): another anomalodesmatan evolutionary eccentric. Transactions of the Royal Society of South Africa 67, 5989.Google Scholar
Morton, B. and Thurston, M.H. (1989) The functional morphology of Propeamussium lucidum (Bivalvia: Pectinacea), a deep sea predatory scallop. Journal of Zoology, London 218, 471496.Google Scholar
Morton, B., Machado, F.M. and Passos, F.D. (2015) The biology and functional morphology of Grippina coronata (Anomalodesmata: Cuspidarioidea: Spheniopsidae) from the southwestern Atlantic off Brazil. The smallest carnivorous bivalve? Journal of Molluscan Studies in press.Google Scholar
Morton, B., Tristão da Cunha, R.M.P.T. and de Frias Martins, A.M. (2013) Species richness, relative abundance and dwarfism in Azorean bivalves: consequences of latitude, isolation or productivity? Or all three? Journal of the Marine Biological Association of the United Kingdom 94, 567578.Google Scholar
Nakazima, M. (1967) Some observations on the soft parts of Halicardia nipponensis Okutani. Venus 25, 147158.Google Scholar
Oliveira, C.D.C. and Sartori, A.F. (2014) Discovery and anatomy of the arenophilic system of cuspidariid clams (Bivalvia: Anomalodesmata). Journal of Morphology 275, 916.Google Scholar
Owen, G., Trueman, E.R. and Yonge, C. (1953) The ligament in the Lamellibranchia. Nature, London 171, 16.Google Scholar
Pelseneer, P. (1888) Report on the anatomy of the deep-sea Mollusca. Reports of the Scientific Results of the Challenger Expedition, Zoology 27(LXXIV), 142.Google Scholar
Pelseneer, P. (1911) Les lamellibranches de l'expédition du Siboga. Partie Anatomique. Siboga Expeditie IIIa, 1125 + plates I–XXVI.Google Scholar
Plate, L. (1897) Giebt es septibranchiate Muscheln? Sitzungberichte der Gesellschaft Naturforschender Freunde zu Berlin 2428.Google Scholar
Poppe, G.T. and Goto, Y. (1993) European Sea Shells. Vol. II (Scaphopoda, Bivalvia, Cephalopoda). Wiesbaden: Hemmen, 221 pp.Google Scholar
Purchon, R.D. (1956) The stomach in the Protobranchia and Septibranchia (Lamellibranchia). Proceedings of the Zoological Society of London 127, 511525.Google Scholar
Purchon, R.D. (1958) Phylogeny in the Lamellibranchia. Proceedings of the Centenary and Bicentenary Congress of Biology, Singapore 1958. Singapore: University of Singapore, pp. 69–82.Google Scholar
Purchon, R.D. (1962) Phylogenetic classification of the Bivalvia, with special reference to the Septibranchia. Proceedings of the Malacological Society of London 35, 7180.Google Scholar
Purchon, R.D. (1987) The stomach in the Bivalvia. Philosophical Transactions of the Royal Society of London Series B 316, 183276.Google Scholar
Reid, R.G.B. (1978) Gastric protein digestion in the carnivorous septibranch Cardiomya planetica Dall; with comparative notes on deposit and suspension feeding bivalves. Comparative Biochemistry and Physiology A 56, 573575.Google Scholar
Reid, R.G.B. and Crosby, S.P. (1980) The raptorial siphonal apparatus of the carnivorous septibranch Cardiomya planetica Dall (Mollusca: Bivalvia), with notes on feeding and digestion. Canadian Journal of Zoology 58, 670679.Google Scholar
Reid, R.G.B. and Reid, A.M. (1974) The carnivorous habit of members of the septibranch genus Cuspidaria (Mollusca: Bivalvia). Sarsia 56, 4756.Google Scholar
Ridewood, W.G. (1903) On the structure of the gill of the Lamellibranchia. Philosophical Transactions of the Royal Society, Series B 195, 147284.Google Scholar
Sneli, J.-A., Schiøtte, T., Jensen, K.R., Wikander, K.R., Stockland, Ø. and Sørensen, J. (2005) The marine Mollusca of the Faroes. Annales Societatis Scientiarum Færoensis Supplementum 42, 1190.Google Scholar
Tebble, N. (1966) British Bivalve Seashells. London: Trustees of the British Museum (Natural History), 212 pp.Google Scholar
Tëmkin, I. and Strong, E.E. (2013) New insights on stomach anatomy of carnivorous bivalves. Journal of Molluscan Studies 79, 332339.Google Scholar
Yonge, C.M. (1928) Structure and function of the organs of feeding and digestion in the septibranchs, Cuspidaria and Poromya . Philosophical Transactions of the Royal Society, Series B 216, 221263.Google Scholar
Yonge, C.M. (1948) Formation of siphons in Lamellibranchia. Nature species. Part I – Bivalvia. Proceedings of the United States National Museum 20, 775901.Google Scholar
Yonge, C.M. (1957) Mantle fusion in the Lamellibranchia. Pubblicazioni della Stazione Zoologica di Napoli 29, 151171.Google Scholar
Yonge, C.M. (1978) Significance of the ligament in the classification of the Bivalvia. Proceedings of the Royal Society of London, Series B 202, 231248.Google Scholar
Yonge, C.M. (1982) Mantle margins with a revision of siphonal types in the Bivalvia. Journal of Molluscan Studies 48, 102103.Google Scholar
Yonge, C.M. and Morton, B. (1980) Ligament and lithodesma in the Pandoracea and Poromyacea with a discussion on the evolutionary history of the Anomalodesmata (Mollusca: Bivalvia). Journal of Zoology, London 191, 263292.CrossRefGoogle Scholar