Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:21:41.514Z Has data issue: false hasContentIssue false

IHARA LEMMA AND LEVEL RAISING IN HIGHER DIMENSION

Published online by Cambridge University Press:  25 January 2021

Pascal Boyer*
Affiliation:
Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France, CoLoss AAPG2019 (boyer@math.univ-paris13.fr)

Abstract

A key ingredient in the Taylor–Wiles proof of Fermat’s last theorem is the classical Ihara lemma, which is used to raise the modularity property between some congruent Galois representations. In their work on Sato and Tate, Clozel, Harris and Taylor proposed a generalisation of the Ihara lemma in higher dimension for some similitude groups. The main aim of this paper is to prove some new instances of this generalised Ihara lemma by considering some particular non-pseudo-Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level-raising statement.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. B. and Newton, J., Monodromy for some rank two galois representations over CM fields, Preprint, 2019, https://arxiv.org/abs/1901.05490.Google Scholar
Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque 100 (1982), 5171.Google Scholar
Boyer, P., Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177(2) (2009), 239280.Google Scholar
Boyer, P., Cohomologie des systèmes locaux de Harris-Taylor et applications, Compos. Math. 146(2) (2010), 367403.Google Scholar
Boyer, P., Réseaux d’induction des représentations elliptiques de Lubin-Tate, J. Algebra 336(1) (2011), 2852.Google Scholar
Boyer, P., Filtrations de stratification de quelques variétés de Shimura simples, Bull. Soc. Math. France 142(4) (2014), 777814.Google Scholar
Boyer, P., Congruences automorphes et torsion dans la cohomologie d’un système local d’Harris-Taylor, Ann. Inst. Fourier (Grenoble) 65(4) (2015), 16691710.Google Scholar
Boyer, P., Sur la torsion dans la cohomologie des variétés de Shimura de Kottwitz-Harris-Taylor, J. Inst. Math. Jussieu 18(3), May 2019, (2017), 499517, https://doi.org/10.1017/S1474748017000093.Google Scholar
Boyer, P., Persistence of non degeneracy: A local analog of Ihara’s lemma, soumis (2018), 1–49, preprint: https://arxiv.org/abs/1810.06020. Google Scholar
Boyer, P., Groupe mirabolique, stratification de Newton raffinée et cohomologie des espaces de Lubin-Tate, Bull. Soc. Math. France NN (2019), 118. Google Scholar
Boyer, P., Galois irreducibility implies cohomology freeness for KHT Shimura varieties, Bull. SMF tome 148 Fasc. 2020, 1–23, https://www.math.univ-paris13.fr~boyer/recherche/rho-irred.pdf.Google Scholar
Caraiani, A. and Scholze, P., On the generic part of the cohomology of compact unitary Shimura varieties, Ann. of Math. (2) 186(3) (2017), 649766.CrossRefGoogle Scholar
Clozel, L., Harris, M. and Taylor, R., Automorphy for some $l$ -adic lifts of automorphic mod $l$ representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1181.CrossRefGoogle Scholar
Clozel, L. and Thorne, J., Level-raising and symmetric power functoriality, I, Compos. Math. 150(5) (2014), 729748.Google Scholar
Dat, J.-F., Un cas simple de correspondance de Jacquet-Langlands modulo $l$ , Proc. Lond. Math. Soc. (3) 104 (2012), 690727.Google Scholar
Dat, J.-F., Théorie de Lubin-Tate non-abélienne $l$ -entière, Duke Math. J. 161(6) (2012), 9511010.CrossRefGoogle Scholar
Emerton, M. and Gee, T., $p$ -adic Hodge theoretic properties of étale cohomology with mod $p$ coefficients, and the cohomology of Shimura varieties, Algebra Number Theory, 9(5) (2015), 10351088.CrossRefGoogle Scholar
Emerton, M. and Helm, D., The local langlands correspondence for Gl(n) in families, Ann. Sci. Éc. Norm. Supér (4) 47 (2014), 655722.Google Scholar
Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies no. 151 (Princeton University Press, Princeton, NJ, 2001).Google Scholar
Illusie, L., Autour du théorème de monodromie locale, Astérisque, tome 223 (1994), Seinaire Bourbaki, exp. no 1, 957.Google Scholar
Scholze, P., On the $p$ -adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51(4) (2018), 811863.Google Scholar
Taylor, R. and Yoshida, T., Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), 467493.Google Scholar
Vignéras, M.-F., Induced $R$ -representations of $p$ -adic reductive groups, Selecta Math. (N.S.) 4(4) (1998), 549623.CrossRefGoogle Scholar
Zelevinsky, A. V., Induced representations of reductive $p$ -adic groups, II: On irreducible representations of $\mathrm{GL}(n)$ , Ann. Sci. Éc. Norm. Supér. (4) 13(2) (1980), 165210.CrossRefGoogle Scholar