No CrossRef data available.
Article contents
Sporadic group geometries and the action of involutions
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This paper is an expository introduction to recent and current work on geometries associated with minimal parabolic subgroups and maximal 2-local subgroups of finite sporadic, based on lectures given by the authors at the Canberra Group Workshop, held at the Australian National University in June 1993.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1994
References
[1]Buekenhout, F., ‘Diagrams for geometries and groups’, J. Combin. Theory Ser. A 27 (1979), 121–151.CrossRefGoogle Scholar
[2]Buekenhout, F., ‘The basic diagram of a geometry’, in: Geometric and Groups (eds. Aigner, M. and Jungnickel, D.), Lecture Notes in Mathematics 893 (Springer, Berlin, 1981).Google Scholar
[3]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups (Oxford University Press, 1985).Google Scholar
[4]Heiss, S., ‘On a parabolic system of type M24’, J. Algebra 142 (1991), 188–200.CrossRefGoogle Scholar
[6]Ivanov, A. A., ‘A geometric characterization of the monster’, in: Groups, combinatorics and geometry (eds. Liebeck, M. and Saxl, J.) (Cambridge University Press, Cambridge, 1992).Google Scholar
[7]Ivanov, A. A. and Shpectorov, S. V., ‘Geometries for sporadic groups related to the Peterson graph I’, Comm. Algebra 16 (1988), 925–953.CrossRefGoogle Scholar
[8]Pasini, A., ‘A classification of a class of Buekenhout Geometries exploiting amalgams and simple connectedness (groups for geometries in given diagrams III)’, Atti. Sem. Mat. Fis. Univ. Modena XL (1992), 247–283.Google Scholar
[9]Ronan, M. and Smith, S., ‘2-local geometries for some sporadic groups’, in: Proc. Symp. Pure. Math., volume 37 (American Math. Soc., Providence, 1981) pp. 283–289.Google Scholar
[10]Ronan, M. and Stroth, G., ‘Minimal parabolic geometries for the sporadic groups’, European J. Combin 5 (1984), 59–92.CrossRefGoogle Scholar
[12]Rowley, P., ‘On the minimal parabolic system related to M24’, J. London Math. Soc. (2) 40 (1989), 40–57.CrossRefGoogle Scholar
[13]Rowley, P. and Walker, L., ‘A characterization of the Co2-minimal parabolic geometry’, to appear in Nova Journal of Algebra and Geometry.Google Scholar
[16]Rowley, P., ‘On the Fi22-minimal parabolic geometry I’, to appear in Geom. Dedicata..Google Scholar
[17]Rowley, P., ‘On the Fi22-minimal parabolic geometry II’, to appear in Geom. Dedicata..Google Scholar
[18]Segev, Y., ‘On the uniqueness of the Co1 2-local geometry’, Geom. Dedicata 25 (1988), 159–219.CrossRefGoogle Scholar
[19]Tits, J., Buildings and Buekenhout Geometries’, in: Finite simple groups II (ed. Collins, M.) (Academic Press, New York, 1981).Google Scholar
[20]Walker, L., The maximal 2-local geometry for Fi'24 (Ph.D. Thesis, University of Manchester, 1991).Google Scholar
You have
Access