Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T10:26:53.315Z Has data issue: false hasContentIssue false

A Radon-Nikodým theorem for vector polymeasures

Published online by Cambridge University Press:  09 April 2009

F. J. Fernández
Affiliation:
Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, Senda del Rey s/n, 28040 Madrid, Spain e-mail: ffernan@mat.uned.es, pjimenez@mat.uned.es, tulecia@mat.uned.es
P. Jiménez Guerra
Affiliation:
Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, Senda del Rey s/n, 28040 Madrid, Spain e-mail: ffernan@mat.uned.es, pjimenez@mat.uned.es, tulecia@mat.uned.es
M. T. Ulecia
Affiliation:
Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, Senda del Rey s/n, 28040 Madrid, Spain e-mail: ffernan@mat.uned.es, pjimenez@mat.uned.es, tulecia@mat.uned.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Radon-Nikodým theorem for Banach valued polymeasures is proved.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Brilleriger, D. R., ‘Bounded polymeasures and associated translation commutatice operators’, Proc. Amer. Math. Soc. 18 (1967), 487491.CrossRefGoogle Scholar
[2]Dobrakov, I., ‘On integration in Banach spaces VIII (polymeasures)’, Czechoslovak Math. J. 37 (1987), 487506.CrossRefGoogle Scholar
[3]Dobrakov, I., ‘On integration in Banach spaces IX (integration with respect to polymeasures)’, Czechoslovak Math. J. 38 (1988), 589601.CrossRefGoogle Scholar
[4]Fernández-Arroyo, F. J. Fernández y, García, M. L. Leópez and del Ama, M. V. Martín, ‘Una integración general en espacios localmente convexos’, Rev. Roumaine Math. Pures Appl. 40 (1995), 593597.Google Scholar
[5]Jefferies, B., ‘Radon polymeasures’, Bull. Austral. Math. Soc. 32 (1985), 207215.CrossRefGoogle Scholar
[6]Jefferies, B. and Ricker, W. J., ‘Integration with respect to vector valued Radon polymeasures’, J. Austral. Math. Soc. (Series A) 56 (1994), 1740.CrossRefGoogle Scholar
[7]Kluvánek, I., ‘Remark on bimeasures’, Proc. Amer. Math. Soc. 81 (1981), 233239.CrossRefGoogle Scholar
[8]Kluvánek, I., ‘Vector-valued polymeasures and perturbations of semigroups of operators’, in: Proc. Miniconference on partial differential equations (Canberra, 1981) (Proc. Centre Math. Anal. Austral. Nat. Univ., 1, Canberra, 1982) pp. 118123.Google Scholar
[9]Maynard, H. D., ‘A Radon-Nikodým theorem for operator valued measures’, Trans. Amer. Math. Soc. 173 (1972), 449463.Google Scholar
[10]Ylinen, K., ‘On vector bimeasures’, Ann. Mat. Pura Appl. 117 (1978), 115138.CrossRefGoogle Scholar