Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T06:22:12.123Z Has data issue: false hasContentIssue false

Nonlinear theory of the Weibel instability

Published online by Cambridge University Press:  13 March 2009

Don S. Lemons
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, NM 87545
D. Winske
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, NM 87545
S. Peter Gary
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, NM 87545

Abstract

A canonical distribution function is proposed to describe the instantaneous state of a single nonlinear wave–plasma system as it evolves quasi-statically in time. This function is based on two single particle constants of motion for a charged particle in a zero-frequency transverse magnetic wave and determines a wavenumber condition and two system energy constants. In the case of a onecomponent bi-Maxwellian plasma with T/T>1, these relations are particularly simple and yield expressions for the energy in the magnetic wave field, the wavenumber, the temperatures, and the entropy of the system in terms of one unknown parameter, chosen to be the instantaneous temperature ratio, T/T The maximum value of the field energy is expressed in terms of only the initial temperature anisotropy, and is shown to be always less than of the system's total energy. The results are in good agreement with computer simulations of the electron Weibel instability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B., & Feldman, W. C. 1977 J. Geophys. Res. 82, 618.CrossRefGoogle Scholar
Bell, T. F. 1965 Ploys. Fluids, 8, 1829.Google Scholar
Berger, R. L. & Davidson, R. C. 1972 Phys. Fluids, 15, 2327.CrossRefGoogle Scholar
Callen, H. B. 1960 Thermodynamics, Wiley.Google Scholar
Cuperman, S. & Salu, Y. 1973 J. Plasma Phys. 9, 295.CrossRefGoogle Scholar
Cuperman, S., Sternlieb, A. & Williams, D. J. 1976 J. Plasma Phys. 16, 57.CrossRefGoogle Scholar
Davidson, R. C. & Hammer, D. A. 1971 Phys. Fluids, 14, 1452.CrossRefGoogle Scholar
Davidson, R. C. & Hammer, D. A. 1972 Phys. Fluids, 15, 1282.CrossRefGoogle Scholar
Davidson, R. C., Hammer, D. A., Haber, I. & Wagner, C. E. 1972 Phys. Fluids, 15, 317.CrossRefGoogle Scholar
Davidson, R. C. & Ogden, J. M. 1975 Phys. Fluids, 18, 1045.CrossRefGoogle Scholar
Davidson, R. C. & Tsai, S. T. 1973 J. Plasma Phys. 9, 101.CrossRefGoogle Scholar
Gary, S. P. & Feldman, W. C. 1978 Phys. Fluids, 21, 72.CrossRefGoogle Scholar
Hamasaki, S. & Krall, N. A. 1973 Phys. Fluids, 16, 145.CrossRefGoogle Scholar
Laird, M. J. & Knox, F. B. 1965 Phys. Fluids, 8, 755.CrossRefGoogle Scholar
Lutomirski, R. F. & Sudan, R. N. 1966 Phys. Rev. 147, 156.CrossRefGoogle Scholar
Matsumo, H. & Yasuda, Y. 1976 Phys. Fluids. 19, 1513.CrossRefGoogle Scholar
Morse, R. L. & Nielson, C. W. 1971 Phys, Fluids, 14, 830.Google Scholar
Nielson, C. W. & Lewis, H. R. 1976 Meth. Comp. Phys. 16, 369.Google Scholar
Ossakow, S. L., Ott, E. & Haber, I. 1972 Phys. Fluids, 15, 2314.CrossRefGoogle Scholar
Sharer, J. E. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.CrossRefGoogle Scholar
Stix, T. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Sudan, R. N. 1963 Phys. Fluids, 6, 57.CrossRefGoogle Scholar