Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T10:34:38.291Z Has data issue: false hasContentIssue false

Negative ion sound solitary waves revisited

Published online by Cambridge University Press:  04 November 2013

R. A. CAIRNS*
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK (rac@st-andrews.ac.uk)

Abstract

Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairns, R. A., Mamun, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Chuang, S-H. and Lau, L. N. 2009 Phys. Plasmas 16, 022901.CrossRefGoogle Scholar
Baluku, T. K. and Hellberg, M. A. 2012 Phys. Plasmas 19, 012106.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A. and Verheest, F. 2010 Europhys. Lett. 91, 15001.CrossRefGoogle Scholar
Sagdeev, R. 1966 In: Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultants Bureau.Google Scholar
Tsallis, C. 1988 J. Stat. Phys 52, 479.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar