Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T05:55:46.821Z Has data issue: false hasContentIssue false

Phylogenetic patterns of Haemonchus contortus and related trichostrongylid nematodes isolated from Egyptian sheep

Published online by Cambridge University Press:  20 October 2016

O.M. Kandil*
Affiliation:
Department of Parasitology and Animal Diseases, National Research Centre, El Bohouse Street, Dokki, PO Box 12622, Giza, Egypt
K.A. Abdelrahman
Affiliation:
Department of Parasitology and Animal Diseases, National Research Centre, El Bohouse Street, Dokki, PO Box 12622, Giza, Egypt
H.A. Fahmy
Affiliation:
Department of Biotechnology, Animal Health Institute (AHRI), Giza, Egypt
M.S. Mahmoud
Affiliation:
Department of Parasitology and Animal Diseases, National Research Centre, El Bohouse Street, Dokki, PO Box 12622, Giza, Egypt
A.H. El Namaky
Affiliation:
Department of Parasitology and Animal Diseases, National Research Centre, El Bohouse Street, Dokki, PO Box 12622, Giza, Egypt
J.E. Miller
Affiliation:
Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

Haemonchus contortus is a major parasite of small ruminants and its blood-feeding behaviour causes effects ranging from mild anaemia to death. Knowledge of the genetic variation within and among H. contortus populations can provide the foundation for understanding transmission patterns and aid in the control of haemonchosis. Adult male H. contortus were collected from three geographical regions in Egypt. The second internal transcribed spacer (ITS2) of nuclear ribosomal DNA was amplified using the polymerase chain reaction (PCR) and sequenced directly. The population genetic diversity and sequence variations were determined. Nucleotide sequence analyses revealed one genotype (ITS2) in all worms, without genetic differentiation. The similarity in population genetic diversity and genetic patterns observed among the three geographical regions could be attributed to possible movement between the sites. This is the first study of genetic variation in H. contortus in Egypt. The present results could have implications for the rapid characterization of H. contortus and other trichostrongyloid nematodes, and evaluation of the epidemiology of H. contortus in Egypt.

Type
Research Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkari, H., Jebali, J., Gharbi, M., Mhadhbi, M., Awadi, S. & Darghouth, M.A. (2013) Epidemiological study of sympatric Haemonchus species and genetic characterization of H. contortus in domestic ruminants in Tunisia. Veterinary Parasitology 193, 118125.CrossRefGoogle ScholarPubMed
Anderson, T.J.C., Blouin, M.S. & Beech, R.N. (1998) Population biology of parasitic nematodes: applications of genetic markers. Advances in Parasitology 41, 219283.Google Scholar
Audebert, F., Durette-Desset, M.C. & Chilton, N.B. (2000) Internal transcribed spacer rDNA can be used to infer the phylogenetic relationships of species within the genus Nematodirus (Nematoda: Molineoidea). International Journal for Parasitology 30, 187191.CrossRefGoogle ScholarPubMed
Besier, R.B., Kahn, L.P., Sargsion, N.D. & Van Wyk, J.A. (2016) Diagnosis, treatment and management of Haemonchus contortus in small ruminants. pp. 181238 in Gasser, R.B. and Von Samson-Himmelstjerna, G. (Eds) H. contortus and haemonchosis – past, present and future trends. Advances in Parasitology 93.Google Scholar
Blouin, M.S. (1998) Mitochondrial DNA diversity in nematodes. Journal of Helmintholology 72, 285289.Google Scholar
Blouin, M.S. (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology 32, 527531.Google Scholar
Blouin, M.S., Yowell, C.A., Courtney, C.H. & Dame, J.B. (1995) Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.Google Scholar
Braisher, T.L., Gemmelli, N.J., Grenfell, B.T. & Amos, W. (2004) Host isolation and patterns of genetic variability in three populations of Teladorsagia from sheep. International Journal for Parasitology 34, 11971204.Google Scholar
Brasil, B.S.A.F., Nunes, R.L., Bastianetto, E., Drummond, M.G., Carvalho, D.C., Leite, R.C., Molento, M.B. & Oliveira, D.A.A. (2012) Genetic diversity patterns of H. placei and H. contortus populations isolated from domestic ruminants in Brazil. International Journal for Parasitology 42, 469479.Google Scholar
Cerutti, M.C., Citterio, C.V., Bazzocchi, C., Epis, S., D'Amelio, S., Ferrari, N. & Lanfranch, P. (2010) Genetic variability of H. contortus (Nematoda: Trichostrongyloidea) in alpine ruminant host species. Journal of Helminthology 84, 276283.Google Scholar
Chilton, N.B. & Gasser, R.B. (1999) Sequence differences in the internal transcribed spacers of DNA among four species of hookworms (Ancylostomatoidea: Ancylostoma). International Journal for Parasitology 29, 19711977.CrossRefGoogle ScholarPubMed
Chilton, N.B., Gasser, R.B. & Beveridge, I. (1997) Phylogenetic relationships of Australian strongyloid nematodes inferred from ribosomal DNA sequences data. International Journal for Parasitology 27, 14811494.Google Scholar
Dallas, J.F., Irvine, R.J. & Halvorsen, O. (2000) DNA evidence that Ostertagiagruehneri and Ostertagiaarctica (Nematoda: Ostertagiinae) in reindeer from Norway and Svalbard are conspecific. International Journal for Parasitology 30, 655658.Google Scholar
Durette-Desset, M.C. & Chabaud, A.G. (1993) Nomenclature des Strongylida au-dessus du groupe-famille. Annales de Parasitologie Humaine et Comparee 68, 111112.Google Scholar
Durette-Desset, M.C., Hugot, J.P., Darlu, P. & Chabaud, A.G. (1999) A cladistic analysis of the Trichostrongyloidea (Nematoda). International Journal for Parasitology 29, 10651086.Google Scholar
Gasser, R.B. & Newton, S.E. (2000) Genomic and genetic research on bursate nematodes: significance, implications and prospects. International Journal for Parasitology 30, 509534.Google Scholar
Gasser, R.B., Chilton, N.B., Hoste, H. & Stevenson, L.A. (1994) Species identification of trichostrongyle nematodes by PCR-linked RFLP. International Journal for Parasitology 24, 291293.CrossRefGoogle ScholarPubMed
Gasser, R.B., Bott, N.J., Chilton, N.B., Hunt, P. & Beveridge, I. (2008) Toward practical, DNA based diagnostic methods for parasitic nematodes of livestock – bionomic and biotechnological implications. Biotechnology Advances 26, 325334.CrossRefGoogle ScholarPubMed
Gharamah, A.A., SitiAzizah, M.N. & Rahman, W.A. (2012) Genetic variation of H. contortus (Trichostrongylidae) in sheep and goats from Malaysia and Yemen. Veterinary Parasitology 188, 268276.CrossRefGoogle ScholarPubMed
Hoberg, E.P. & Lichtenfels, J.R. (1994) Phylogenetic systematic analysis of the Trichostrongylidae (Nematoda), with an initial assessment of co-evolution and biogeography. Journal of Parasitology 80, 976996.CrossRefGoogle Scholar
Hoste, H., Chilton, N.B., Beveridge, I. & Gasser, R.B. (1998) A comparison of the first internal transcribed spacer of ribosomal DNA in seven species of Trichostrongylus (Nematoda: Trichostrongylidae). International Journal for Parasitology 28, 12511260.Google Scholar
Hunt, P.W., Knox, M.R., Le Jambre, L.F., McNally, J. & Anderson, L.J. (2008) Genetic and phenotypic differences between isolates of H. contortus in Australia. International Journal for Parasitology 6, 885900.Google Scholar
Hussain, T., Periasamy, K., Nadeem, A., Babar, M.E., Pichler, R. & Diallo, A. (2014) Sympatric species distribution, genetic diversity and population structure of Haemonchus isolates from domestic ruminants in Pakistan. Veterinary Parasitology 206, 188199.Google Scholar
Jacquiet, P., Humbert, J.F., Comes, A.M., Cabaret, J., Thiam, A. & Cheikh, D. (1995) Ecological, morphological and genetic characterization of sympatric Haemonchus spp. parasites of domestic ruminants in Mauritania. Parasitology 110, 483492.Google ScholarPubMed
Kampfer, S., Strumbauer, C. & Ott, J. (1998) Phylogenetic analysis of rDNA sequences from adenophorean nematodes and implications for the Adenophorea–Secernentea controversy. Invertebrate Biology 17, 2936.Google Scholar
Kanzaki, N. & Futai, K. (2002) A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4, 3541.CrossRefGoogle Scholar
Learmount, J., Conyers, C., Hird, H., Morgan, C., Craig, B.H., Von Samson-Himmelstjerna, G. & Taylor, M. (2009) Development and validation of real-time PCR methods for diagnosis of Teladorsagia circumcincta and H. contortus in sheep. Veterinary Parasitology 166, 268274.Google Scholar
Lichtenfels, J.R., Pilitt, P.A. & Hobere, E.P. (1994) New morphological characters for identifying individual specimens of Haemonchus spp. (Nematoda: Trichostrongyloidea) and a key to species in ruminants of North America. Journal of Parasitology 80, 107119.CrossRefGoogle Scholar
MAFF (Ministry of Agriculture, Fisheries and Food). (1986) Manual of veterinary parasitological laboratory techniques. London, UK, ADAS, HMSO.Google Scholar
Prichard, R. (2001) Genetic variability following selection of H. contortus with anthelmintics. Trends in Parasitology 17, 4454.Google Scholar
Riggs, N.L. (2001) Experimental cross-infections of Haemonchus placei (Place, 1983) in sheep and cattle. Veterinary Parasitology 94, 191197.Google Scholar
Sambrook, J. & Russell, D.W. (2000) Molecular cloning: a laboratory manual. Plainview, New York, Cold Spring Harbor Laboratory Press.Google Scholar
Sanger, F., Nicklen, S. & Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 54635467.CrossRefGoogle ScholarPubMed
Silvestre, A., Sauve, C., Cortet, J. & Cabaret, J. (2009) Contrasting genetic structures of two parasitic nematodes determined on the basis of neutral microsatellite markers and selected anthelmintics resistance markers. Molecular Ecology 18, 50865100.Google Scholar
Stevenson, L.A., Chilton, N.B. & Gasser, R.B. (1999) Differentiation of H. placei from H. contortus (Nematoda: Trichostrongylidae) by their second internal transcribed spacer (ribosomal DNA). International Journal for Parasitology 25, 483488.Google Scholar
Troell, K., Engstrom, A., Morrison, D.A., Mattsson, J.G. & Hoglund, J. (2006) Global patterns reveal strong population structure in H. contortus, a nematode parasite of domesticated ruminants. International Journal for Parasitology 36, 13051316.Google Scholar
Whitlock, J.H. (1960) Diagnosis of veterinary parasitisms. 1st edn. Philadelphia, Lea and Febiger.Google Scholar
Yin, F., Gasser, R.B., Li, F.M.B., Huang, W., Zou, F., Zhao, G., Wang, C., Yang, X., Zhou, Y., Zhao, J., Fang, R. & Hu, M. (2013) Genetic variability within and among H. contortus isolates from goats and sheep in China. Parasites & Vectors 6, 279.Google Scholar