Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T03:53:55.994Z Has data issue: false hasContentIssue false

Three-dimensional nonlinear blow-up from a nearly planar initial disturbance, in boundary-layer transition: theory and experimental comparisons

Published online by Cambridge University Press:  26 April 2006

P. A. Stewart
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK Current address: School of Mathematics, The University, Leeds, LS2 9JT, UK.
F. T. Smith
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

Abstract

This theoretical study describes how three-dimensional nonlinear distortion may soon take effect, following a small initial input disturbance that is nearly planar, in an otherwise two-dimensional boundary layer at high Reynolds number. The mechanism involved is a form of vortex-wave interaction, the first such to be examined in the so-called high-frequency range. The interaction is powerful, in that three-dimensional disturbances of relatively low amplitude (the wave part) interact nonlinearly with the three-dimensional corrections to the mean flow (the vortex part) at a stage where the purely two-dimensional case alone would still be linear. A coupled nonlinear partial-differential system is derived, governing the vortex and wave parts. Computations and analysis of the system are then presented. These point to a finite-time singularity arising in the solution, involving blow-up of both the vortex and the wave amplitudes (but particularly the former), accompanied by spanwise focusing into streets. This is believed to be the first nonlinear interaction in the high-frequency range to produce a finite-time (or-distance) blow-up. The blow-up is such that the local flow soon enters a strongly nonlinear three-dimensional stage in which the total mean flow is altered. The implications of this blow-up and focusing for one of the classic paths of boundary-layer transition are also discussed, and here quantitative and/or order-of-magnitude comparisons suggest that the theory is in line with the findings of Klebanoff & Tidstrom (1959) and later experiments.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassom, A. P. & Hall P. 1990 Stud. Appl. Maths.
Bayly B. J., Orszag, S. A. & Herbert T. 1988 Ann. Rev. Fluid Mech. 20, 359391.
Bennett J., Hall, P. & Smith F. T. 1991 J. Fluid Mech. 223, 475495.
Borodulin, V. I. & Kachanov Y. S. 1988 Proc. Siberian Div. USSR Acad. Sci., Tech. Sci. 18, 6577 (in Russian). (See also Sov. J. Appl. Phys. 3 (2), 7081, 1989, in English.)
Craik A. D. D. 1971 J. Fluid Mech. 50, 393413.
Craik A. D. D. 1985 In Proc. IUTAM Symp. on Laminar-Turbulent Transition, 1984, Novosibirsk, USSR (ed. W. Kozlov). Springer.
Elliott J. W., Cowley, S. J. & Smith F. T. 1983 Geophys. Astrophys. Fluid Dyn. 25, 77138.
Hall, P. & Smith F. T. 1988 Proc. R. Soc. Lond. A 417, 255282.
Hall, P. & Smith F. T. 1989 Eur. J. Mech. B 8, 179205.
Hall, P. & Smith F. T. 1990 In Instability and Transition, Vol. ii (ed. M. Y. Hussaini & R. G. Voigt), pp. 539 Springer.
Hall, P. & Smith F. T. 1991 J. Fluid Mech. 227, 641666.
Hama, F. R. & Nutant J. 1963 Proc. Heat Transer Fluid Mech. Inst. 7793.
Hoyle J. M. 1992 Extensions to the theory of finite-time breakdown in unsteady interactive boundary layers. Ph.D. thesis, University of London.
Hoyle J. M., Smith, F. T. & Walker J. D. A. 1991 Comput. Phys. Commun. 65, 151.
Hoyle J. M., Smith, F. T. & Walker J. D. A. 1992 On sublayer eruption and vortex formation; part 2. (in preparation).
Kachanov Y. S. 1988 Experimental results on stability of separating flow.
Kachanov, Y. S. & Levchenko V. Y. 1984 J. Fluid Mech. 138, 209.
Kachanov Y. S., Ryzhov, O. S. & Smith F. T. 1992 Formation of solitons in transitional boundary layers: theory and experiments. J. Fluid Mech. (submitted).Google Scholar
Klebanoff, P. S. & Tidstrom K. D. 1959 NASA TN D-195.
Klebanoff P. S., Tidstrom, K. D. & Sargent L. M. 1962 J. Fluid Mech. 12, 134.
Kleiser, L. & Zang T. A. 1991 Ann. Rev. Fluid Mech. 23, 495437.
Kovasznay L. S. G., Komoda, H. & Vasudeva B. R. 1962 Proc. Heat Transfer & Fluid Mech. Inst. 126.
Nishioka M., Asai, M. & Iida S. 1979 In Laminar-Turbulent Transition. IUTAM Mtg, Stuttgart.
Peridier V. J., Smith, F. T. & Walker J. D. A. 1991a J. Fluid Mech. 232, 99131.
Peridier V. J., Smith, F. T. & Walker J. D. A. 1991b J. Fluid Mech. 232, 133165.
Schubauer, G. B. & Skramstad H. K. 1947 Rep. Natl Adv. Comm. Aero., Wash. 909.
Smith F. T. 1979a Proc. R. Soc. Lond. A 366, 91109.
Smith F. T. 1979b Proc. R. Soc. Lond. A 368, 573589.
Smith F. T. 1979c Mathematika 26, 187223.
Smith F. T. 1985 Utd. Tech. Res. Cent. Rep. 8536.
Smith F. T. 1986a J. Fluid Mech. 169, 353377.
Smith F. T. 1986b Utd. Tech. Res. Cent. Rept. 8610.
Smith F. T. 1988 Mathematika 35, 256273.
Smith F. T. 1992 Phil. Trans. R. Soc. Lond. A (in press).
Smith, F. T. & Blennerhassett P. 1992 Proc. R. Soc. Lond. A 436, 585602.
Smith, F. T. & Bowles R. I. 1992 Transition theory and experimental comparisons on (a) amplification into streets and (b) a strongly nonlinear break-up criterion. Proc. R. Soc. Lond. A (submitted).Google Scholar
Smith, F. T. & Burggraf O. R. 1985 Proc. R. Soc. Lond. A 399, 2555.
Smith F. T., Doorly, D. J. & Rothmayer A. P. 1990 Proc. R. Soc. Lond. A 428, 255281.
Smith, F. T. & Stewart P. A. 1987 J. Fluid Mech. 179, 227.
Smith, F. T. & Walton A. G. 1989 Mathematika 36, 262289.
Stewart, P. A. & Smith F. T. 1987 Proc. R. Soc. Lond. A 409, 229248.
Stuart J. T. 1963 Laminar Boundary Layers (ed. L. Rosenhead), Ch. IX. Oxford University Press.
Van Dommelen L. 1981 Unsteady boundary-layer separation. Ph.D. thesis, Cornell University.
Walton, A. G. & Smith F. T. 1992 J. Fluid Mech. 244, 649676.
Zhuk, V. I. & Ryzhov O. S. 1982 Dok. Akad. Nauk. SSSR 263 (1), 5669 (in Russian).