Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:22:24.692Z Has data issue: false hasContentIssue false

Structure function tensor equations with triple decomposition

Published online by Cambridge University Press:  30 March 2023

Federica Gattere
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Alessandro Chiarini
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Emanuele Gallorini
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Maurizio Quadrio*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
*
Email address for correspondence: maurizio.quadrio@polimi.it

Abstract

Exact budget equations are derived for the coherent and stochastic contributions to the second-order structure function tensor. They extend the anisotropic generalised Kolmogorov equations (AGKE) by considering the coherent and stochastic parts of the Reynolds stress tensor, and are useful for the statistical description of turbulent flows with periodic or quasi-periodic features, like, for example, the alternate shedding after a bluff body. While the original AGKE describe production, transport, inter-component redistribution and dissipation of the Reynolds stresses in the combined space of scales and positions, the new equations, called $\varphi$AGKE, contain the phase $\varphi$ as an additional independent variable, and describe the interplay among the mean, coherent and stochastic fields at the various phases. The newly derived $\varphi$AGKE are then applied to a case where an exactly periodic external forcing drives the flow: a turbulent plane channel flow modified by harmonic spanwise oscillations of the wall to reduce drag. The phase-by-phase action of the oscillating transversal Stokes layer generated by the forcing on the near-wall turbulent structures is observed, and a detailed description of the scale-space interaction among mean, coherent and stochastic fields is provided thanks to the $\varphi$AGKE.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, L. & Leschziner, M.A. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26 (7), 075107.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M. 2017 Spectral analysis of near-wall turbulence in channel flow at $Re_{\tau }=4200$ with emphasis on the attached-eddy hypothesis. Phys. Rev. Fluids 2 (1), 014603.CrossRefGoogle Scholar
Agostini, L., Touber, E. & Leschziner, M.A. 2014 Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at $Re_\tau =1000$. J.Fluid Mech. 743, 606635.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J.Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J.Fluid Mech. 896, A16A24.CrossRefGoogle Scholar
Andreolli, A., Quadrio, M. & Gatti, D. 2021 Global energy budgets in turbulent Couette and Poiseuille flows. J.Fluid Mech. 924, A25.CrossRefGoogle Scholar
Arun, S., Sameen, A., Srinivasan, B. & Girimaji, S.S. 2021 Scale-space energy density function transport equation for compressible inhomogeneous turbulent flows. J.Fluid Mech. 920, A31.CrossRefGoogle Scholar
Baron, A. & Quadrio, M. 1996 Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311326.CrossRefGoogle Scholar
Bech, K.H. & Andersson, H.I. 1996 Secondary flow in weakly rotating turbulent plane Couette flow. J.Fluid Mech. 317, 195214.CrossRefGoogle Scholar
Chiarini, A., Gatti, D., Cimarelli, A. & Quadrio, M. 2022 a Structure of turbulence in the flow around a rectangular cylinder. J.Fluid Mech. 946, A35.CrossRefGoogle Scholar
Chiarini, A., Mauriello, M., Gatti, D. & Quadrio, M. 2022 b Ascending-descending and direct-inverse cascades of Reynolds stresses in turbulent Couette flow. J.Fluid Mech. 930, A9A22.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J.Fluid Mech. 715, 436451.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jimenez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J.Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Cimarelli, A., Mollicone, J.-P., van Reeuwijk, M. & De Angelis, E. 2021 Spatially evolving cascades in temporal planar jets. J.Fluid Mech. 910, A19A31.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R.A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J.Fluid Mech. 430, 87109.CrossRefGoogle Scholar
Danaila, L., Voivenel, L. & Varea, E. 2017 Self-similarity criteria in anisotropic flows with viscosity stratification. Phys. Fluids 29 (2), 020716.CrossRefGoogle Scholar
Davidson, P.A., Nickels, T.B. & Krogstad, P.-Å. 2006 The logarithmic structure function law in wall-layer turbulence. J.Fluid Mech. 550, 5160.CrossRefGoogle Scholar
Frohnapfel, B., Hasegawa, Y. & Quadrio, M. 2012 Money versus time: evaluation of flow control in terms of energy consumption and convenience. J.Fluid Mech. 700, 406418.CrossRefGoogle Scholar
Gai, J., Xia, Z., Cai, Q. & Chen, S. 2016 Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows. Phys. Rev. Fluids 1 (5), 054401.CrossRefGoogle Scholar
Gallorini, E., Quadrio, M. & Gatti, D. 2022 Coherent near-wall structures and drag reduction by spanwise forcing. Phys. Rev. Fluids 7 (11), 114602.CrossRefGoogle Scholar
Gatti, D., Chiarini, A., Cimarelli, A. & Quadrio, M. 2020 Structure function tensor equations in inhomogeneous turbulence. J.Fluid Mech. 898, A5A33.CrossRefGoogle Scholar
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J.Fluid Mech. 802, 553558.CrossRefGoogle Scholar
Gatti, D., Remigi, A., Chiarini, A., Cimarelli, A. & Quadrio, M. 2019 An efficient numerical method for the Generalized Kolmogorov Equation. J.Turbul. 20 (8), 457480.CrossRefGoogle Scholar
Hill, R.J. 2001 Equations relating structure functions of all orders. J.Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J.Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Jung, W.J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P.H. 2018 Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence. Phys. Rev. Lett. 120 (24), 244501.CrossRefGoogle ScholarPubMed
Kiya, M. & Matsumura, M. 1988 Incoherent turbulence structure in the near wake of a normal plate. J.Fluid Mech. 190, 343356.CrossRefGoogle Scholar
Koschmieder, E.L. 1979 Turbulent Taylor vortex flow. J.Fluid Mech. 93, 515527.CrossRefGoogle Scholar
Lai, C.K., Charonko, J.J. & Prestridge, K. 2018 A Kármán–Howarth–Monin equation for variable-density turbulence. J.Fluid Mech. 843, 382418.CrossRefGoogle Scholar
Luchini, P. 2020 CPL. Available at https://CPLcode.net.Google Scholar
Luchini, P. 2021 Introducing CPL. arXiv:2012.12143.Google Scholar
Mansour, N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J.Fluid Mech. 194, 1544.CrossRefGoogle Scholar
Mollicone, J.-P., Battista, F., Gualtieri, P. & Casciola, C.M. 2018 Turbulence dynamics in separated flows: the generalised Kolmogorov equation for inhomogeneous anisotropic conditions. J.Fluid Mech. 841, 10121039.CrossRefGoogle Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J.Fluid Mech. 182, 122.CrossRefGoogle Scholar
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369 (1940), 14281442.CrossRefGoogle ScholarPubMed
Quadrio, M., Frohnapfel, B. & Hasegawa, Y. 2016 Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow? Eur. J. Mech. (B/Fluids) 55, 286293.CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillation. J.Fluid Mech. 521, 251271.CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2011 The laminar generalized Stokes layer and turbulent drag reduction. J.Fluid Mech. 667, 135157.CrossRefGoogle Scholar
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J.Fluid Mech. 424, 217241.CrossRefGoogle Scholar
Ricco, P., Skote, M. & Leschziner, M.A. 2021 A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713.CrossRefGoogle Scholar
Thiesset, F. & Danaila, L. 2020 The illusion of a Kolmogorov cascade. J.Fluid Mech. 902, F1.CrossRefGoogle Scholar
Thiesset, F., Danaila, L. & Antonia, R.A. 2014 Dynamical interactions between the coherent motion and small scales in a cylinder wake. J.Fluid Mech. 749, 201226.CrossRefGoogle Scholar
Touber, E. & Leschziner, M.A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J.Fluid Mech. 693, 150200.CrossRefGoogle Scholar
Yakeno, A., Hasegawa, Y. & Kasagi, N. 2014 Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109.CrossRefGoogle Scholar
Yao, H., Mollicone, J.-P. & Papadakis, G. 2022 Analysis of interscale energy transfer in a boundary layer undergoing bypass transition. J.Fluid Mech. 941, A14.CrossRefGoogle Scholar
Young, G.S., Kristovich, D.A.R., Hjelmfelt, M.R. & Foster, R.C. 2002 Rolls, streets, waves and more: a review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Am. Meteorol. Soc. 83 (7), 9971002.Google Scholar