Article contents
Simplified theory of the near-wall turbulent layer of Newtonian and drag-reducing fluids
Published online by Cambridge University Press: 20 April 2006
Abstract
We propose a simplified theory of a viscous layer in near-wall turbulent flow that determines the mean-velocity profile and integral characteristics of velocity fluctuations. The theory is based on the concepts resulting from the experimental data implying a relatively simple almost-ordered structure of fluctuations in close proximity to the wall. On the basis of data on the greatest contribution to transfer processes made by the part of the spectrum associated with the main size of the observed structures, the turbulent fluctuations are simulated by a three-dimensional running wave whose parameters are found from the problem solution. Mathematically the problem reduces to the solution of linearized Navier-Stokes equations. The no-slip condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the conditions of smooth conjunction with the asymptotic shape of velocity and fluctuation-energy profiles resulting from the dimensional analysis are satisfied. The formulation of the problem is completed by the requirement of maximum curvature of the mean-velocity profile on the outer boundary applied from stability considerations.
The solution of the problem does not require any quantitative empirical data, although the conditions of conjunction were formulated according to the well-known concepts obtained experimentally. As a result, the near-wall law for the averaged velocity has been calculated theoretically and is in good agreement with experiment, and the characteristic scales for fluctuations have also been determined. The developed theory is applied to turbulent-flow calculations in Maxwell and Oldroyd media. The elastic properties of fluids are shown to lead to near-wall region reconstruction and its associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. This theory accounts for several features typical of the Toms effect, such as the threshold character of the effect and the decrease in the normal fluctuating velocity. The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new aspects of the drag-reduction effect. It has been established that the Toms effect does not always result in thickening of the viscous sublayer; on the contrary, the most intense drag reduction takes place without thickening in the viscous sublayer.
- Type
- Research Article
- Information
- Copyright
- © 1982 Cambridge University Press
References
- 13
- Cited by