Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T18:44:33.518Z Has data issue: false hasContentIssue false

Reduced-order modelling of the flow around a high-lift configuration with unsteady Coanda blowing

Published online by Cambridge University Press:  29 June 2016

Richard Semaan*
Affiliation:
Institut für Strömungsmechanik, Technische Universität Braunschweig, Hermann-Blenk-Str. 37, D-38108 Braunschweig, Germany
Pradeep Kumar
Affiliation:
Institut für Strömungsmechanik, Technische Universität Braunschweig, Hermann-Blenk-Str. 37, D-38108 Braunschweig, Germany
Marco Burnazzi
Affiliation:
German Aerospace Center (DLR), Center for Computer Applications in AeroSpace Science and Engineering, Bunsenstrasse 10, D-37073 Göttingen, Germany
Gilles Tissot
Affiliation:
Institut de Mathématiques de Toulouse, UMR CNRS 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France
Laurent Cordier
Affiliation:
Institut PPRIME, CNRS – Université de Poitiers – ISAE-ENSMA, F-86962 Futuroscope Chasseneuil, France
Bernd R. Noack
Affiliation:
Institut für Strömungsmechanik, Technische Universität Braunschweig, Hermann-Blenk-Str. 37, D-38108 Braunschweig, Germany Institut PPRIME, CNRS – Université de Poitiers – ISAE-ENSMA, F-86962 Futuroscope Chasseneuil, France LIMSI-CNRS, UPR 3251, Campus Universitaire d’Orsay, Bât 508, Rue John von Neumann, F-91405 Orsay CEDEX, France
*
Email address for correspondence: r.semaan@tu-bs.de

Abstract

We propose a hierarchy of low-dimensional proper orthogonal decomposition (POD) models for the transient and post-transient flow around a high-lift airfoil with unsteady Coanda blowing over the trailing edge. The modal expansion comprises actuation modes as a lifting method for wall actuation following Graham et al. (Intl J. Numer. Meth. Engng, vol. 44 (7), 1999, pp. 945–972) and Kasnakoğlu et al. (Intl J. Control, vol. 81 (9), 2008, pp. 1475–1492). A novel element is separate actuation modes for different frequencies. The structure of the dynamic model rests on a Galerkin projection using the Navier–Stokes equations, simplifying mean-field considerations, and a stochastic term representing the background turbulence. The model parameters are identified with a data assimilation (4D-Var) method. We propose a model hierarchy from a linear oscillator explaining the suppression of vortex shedding by blowing to a fully nonlinear model resolving unactuated and actuated transients with steady and high-frequency modulation of blowing. The models’ accuracy is assessed through the mode amplitudes and an estimator for the lift coefficient. The robustness of the model is physically justified, and then observed for the training and the validation dataset.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkervic, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.Google Scholar
Allan, B., Juang, J., Seifert, A., Pack, L. & Brown, D.2000 Closed-loop separation control using oscillatory flow. Tech. Rep. ICASE report.Google Scholar
Amitay, M., Smith, B. L. & Glezer, A.1998 Aerodynamic flow control using synthetic jet technology. AIAA Paper 1998-208.CrossRefGoogle Scholar
Artana, G., Cammilleri, A., Carlier, J. & Mémin, E. 2012 Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231 (8), 32643288.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Becker, R., King, R., Petz, R. & Nitsche, W. 2007 Adaptive closed-loop separation control on a high-lift configuration using extremum seeking. AIAA J. 45 (6), 13821392.CrossRefGoogle Scholar
Bergmann, M. & Cordier, L. 2008 Optimal control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models. J. Comput. Phys. 227, 78137840.CrossRefGoogle Scholar
Bourgeois, J. A., Martinuzzi, R. J. & Noack, B. R. 2013 Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.CrossRefGoogle Scholar
Bourguet, R., Braza, M. & Dervieux, A. 2011 Reduced-order modeling of transonic flows around an airfoil submitted to small deformations. J. Comput. Phys. 230, 159184.CrossRefGoogle Scholar
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 14–1091:01–48.CrossRefGoogle Scholar
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. 113 (15), 39323937.CrossRefGoogle ScholarPubMed
Burnazzi, M. & Radespiel, R. 2014 Design and analysis of a droop nose for coanda flap applications. AIAA J. Aircraft 51 (5), 15671579.CrossRefGoogle Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Cordier, L., Abou El Majd, B. & Favier, J. 2010 Calibration of POD reduced-order models using Tikhonov regularization. Intl J. Numer. Meth. Fluids 63 (2), 269296.CrossRefGoogle Scholar
Cordier, L., Noack, B. R., Daviller, G., Delvile, J., Lehnasch, G., Tissot, G., Balajewicz, M. & Niven, R. K. 2013 Control-oriented model identification strategy. Exp. Fluids 54, 1580.CrossRefGoogle Scholar
Davidson, I. M.1960 Aerofoil boundary layer control systems. British Patent 913, 754.Google Scholar
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.CrossRefGoogle Scholar
Englar, R.2000 Circulation control pneumatic aerodynamics: blown force and moment augmentation and modifications; past, present, and future. AIAA Paper 2000-2541.CrossRefGoogle Scholar
Galletti, B., Bruneau, C.-H., Zannetti, L. & Iollo, A. 2004 Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161170.CrossRefGoogle Scholar
Gerhard, J., Pastoor, M., King, R., Noack, B. R., Dillmann, A., Morzynski, M. & Tadmor, G.2003 Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper 2003-4262.CrossRefGoogle Scholar
Glezer, A., Amitay, M. & Honohan, A. M. 2005 Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J. 43 (7), 15011511.CrossRefGoogle Scholar
Graham, W. R., Peraire, J. & Tang, K. T. 1999 Optimal control of vortex shedding using low order models. Part 1: open-loop model development. Intl J. Numer. Meth. Engng 44 (7), 945972.3.0.CO;2-F>CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I. J. 2007 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36 (7), 487545.CrossRefGoogle Scholar
Gunzburger, M. 2000 Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (3, 4), 249272.CrossRefGoogle Scholar
Hansen, P. C. 1992 Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34 (4), 561580.CrossRefGoogle Scholar
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Hosseini, Z., Martinuzzi, R. & Noack, B. R. 2015 Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Exp. Fluids 56, 13.CrossRefGoogle Scholar
Jensch, C., Pfingsten, K. C., Radespiel, R., Schuermann, M., Haupt, M. & Bauss, S. 2009 Design aspects of a gapless high-lift system with active blowing. In Proc. Deutscher Luft- und Raumfahrtkongress, Aachen, Germany, pp. 810. Deutsche Gesellschaft für Luft-und Raumfahrt.Google Scholar
Jones, G. S., Viken, S. A., Washburn, A. E., Jenkins, L. N. & Cagle, C. M.2002 An active flow circulation controlled flap concept for general aviation aircraft applications. AIAA Paper 2002-3157.CrossRefGoogle Scholar
Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A system theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332 (4), 157184.CrossRefGoogle Scholar
Kasnakoğlu, C., Serrani, A. & Efe, M. Ö. 2008 Control input separation by actuation mode expansion for flow control problems. Intl J. Control 81 (9), 14751492.CrossRefGoogle Scholar
Killingsworth, N. J. & Krstić, M. 2006 PID tuning using extremum seeking: online, model-free performance optimization. IEEE Control Syst. Mag. 26 (1), 7079.Google Scholar
Kim, J. & Bewley, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.CrossRefGoogle Scholar
Kroll, N., Rossow, C. C., Schwamborn, D., Becker, K. & Heller, G. 2002 MEGAFLOW-a numerical flow simulation tool for transport aircraft design. In ICAS Congress, pp. 1105.Google Scholar
Lachmann, G. V. 1961 Boundary Layer and Flow Control: its Principles and Application. Pergamon Press.Google Scholar
Ladyzhenskaya, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow, 1st edn. Gordon and Breach.Google Scholar
Li, Z., Navon, I. M., Hussain, M. & Dimet, F. L. 2003 Optimal control of cylinder wakes via suction and blowing. Comput. Fluids 32, 149171.CrossRefGoogle Scholar
Luchtenburg, D. M., Aleksić, K., Schlegel, M., Noack, B. R., King, R., Tadmor, G., Günther, B. & Thiele, F. 2010 Turbulence control based on reduced-order models and nonlinear control design. In Active Flow Control II, pp. 341356. Springer.CrossRefGoogle Scholar
Luchtenburg, D. M., Günther, B., Noack, B. R., King, R. & Tadmor, G. 2009 A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid Mech. 623, 283316.CrossRefGoogle Scholar
Lumley, J. L. & Blossey, P. N. 1998 Control of turbulence. Annu. Rev. Fluid Mech. 30, 311327.CrossRefGoogle Scholar
Navon, I. M. 2009 Data assimilation for numerical weather prediction: a review. In Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications (ed. Park, S. K. & Xu, L.), Springer.Google Scholar
Nielson, J. N. & Biggers, J.1987 Recent progress in circulation control aerodynamics. AIAA Paper 87-0001.CrossRefGoogle Scholar
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Noack, B. R., Morzyński, M. & Tadmor, G. 2011 Reduced-Order Modelling for Flow Control: CISM Courses and Lectures. vol. 528. Springer.CrossRefGoogle Scholar
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.CrossRefGoogle Scholar
Noack, B. R., Schlegel, M., Morzyński, M. & Tadmor, G. 2010 System reduction strategy for Galerkin models of fluid flows. Intl J. Numer. Meth. Fluids 63 (2), 231248.CrossRefGoogle Scholar
Noack, B. R., Tadmor, G. & Morzyński, M.2004 Low-dimensional models for feedback flow control. Part I: Empirical Galerkin models. AIAA Paper 2004-2408.CrossRefGoogle Scholar
Östh, J., Noack, B. R., Krajnović, S., Barros, D. & Borée, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body. J. Fluid Mech. 747, 518544.CrossRefGoogle Scholar
Oyler, T. E. & Palmer, W. E.1972 Exploratory investigation of pulse blowing for boundary layer control. Tech. Rep. North American Rockwell Report NR72H-12.Google Scholar
Petz, R. & Nitsche, W. 2007 Active separation control on the flap of a two-dimensional generic high-lift configuration. J. Aircraft 44 (3), 865874.CrossRefGoogle Scholar
Pfingsten, K. C., Cecora, R. D. & Radespiel, R. 2009 An experimental investigation of a gapless high-lift system using circulation control. In Katenet II Conference, Bremen.Google Scholar
Pfingsten, K. C., Jensch, C., Körber, K. V. & Radespiel, R. 2007 Numerical simulation of the flow around circulation control airfoils. In First CEAS European Air and Space Conference CEAS-2007-377.Google Scholar
Pfingsten, K. C. & Radespiel, R.2009 Experimental and numerical investigation of a circulation control airfoil. AIAA Paper 2009-533.CrossRefGoogle Scholar
Podvin, B. 2009 A proper-orthogonal-decomposition based model for the wall layer of a turbulent channel flow. Phys. Fluids 21, 015111.CrossRefGoogle Scholar
Protas, B., Noack, B. R. & Morzyński, M. 2014 An optimal model identification for oscillatory dynamics with a stable limit cycle. J. Nonlinear Sci. 24 (2), 245275.CrossRefGoogle Scholar
Radespiel, R., Pfingsten, K.-C. & Jensch, C. 2009 Flow analysis of augmented high-lift systems. In Hermann Schlichting–100 Years (ed. Radespiel, R., Rossow, C. C. & Brinkmann, B. W.), pp. 168189. Springer.CrossRefGoogle Scholar
Rapoport, D., Fono, I., Cohen, K. & Seifert, A. 2003 Closed-loop vectoring control of a turbulent jet using periodic excitation. J. Propul. Power 10 (4), 646654.CrossRefGoogle Scholar
Ravindran, S. S. 2000 A reduced-order approach for optimal control of fluids using Proper Orthogonal Decomposition. Intl J. Numer. Meth. Fluids 34, 425448.3.0.CO;2-W>CrossRefGoogle Scholar
Rediniotis, O. K., Ko, J. & Kurdila, A. J. 2002 Reduced order nonlinear Navier–Stokes models for synthetic jets. Trans. ASME J. Fluids Engng 124 (2), 433443.CrossRefGoogle Scholar
Rempfer, D. & Fasel, F. H. 1994 Dynamics of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 275, 257283.CrossRefGoogle Scholar
Richardson, L.-F. & Gaunt, J. A. 1927 The deferred approach to the limit. Part I: single lattice. Part II. Interpenetrating lattices. Phil. Trans. R. Soc. Lond. A 299361.Google Scholar
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.CrossRefGoogle Scholar
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds number flows over open cavities. Annu. Rev. Fluid Mech. 38, 251276.CrossRefGoogle Scholar
Schwamborn, D., Gerhold, T. & Heinrich, R. 2006 The DLR TAU-code: recent applications in research and industry. In ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, 5–8 September. Delft University of Technology.Google Scholar
Scott, C., Ghayour, K., Heinkenschloss, M., Ulbrich, M. & Ulbrich, S. 2002 Optimal control of unsteady compressible viscous flows. Intl J. Numer. Meth. Fluids 40, 14011429.CrossRefGoogle Scholar
Seifert, A., Darabi, A. & Wyganski, I. J. 1996 Delay of airfoil stall by periodic excitation. J. Aircraft 33 (4), 691698.CrossRefGoogle Scholar
Seifert, A., Greenblatt, D. & Wygnanski, I. J. 2004 Active separation control: an overview of Reynolds and Mach number effects. Aerosp. Sci. Technol. 8 (7), 569582.CrossRefGoogle Scholar
Sexstone, M. G., Huebner, L. D., Lamar, J. E., McKinley, R. E., Torres, A. O., Burley, C. L., Scott, R. C. & Small, W. J.1998 Synergistic airframe-propulsion interactions and integrations. NASA Tech. Rep. TM-1998-207644.Google Scholar
Shur, M. L., Strelets, M. K., Travin, A. K. & Spalart, P. R. 2000 Turbulence modeling in rotating and curved channels: assessing the Spalart-Shur correction. AIAA J. 38 (5), 784792.CrossRefGoogle Scholar
Smith, A. M. O. 1975 High-lift aerodynamics. J. Aircraft 12 (6), 501530.CrossRefGoogle Scholar
Stuart, J. T. 1971 Nonlinear stability theory. Annu. Rev. Fluid Mech. 3, 347370.CrossRefGoogle Scholar
article Tadmor, G., Lehmann, O., Noack, B. R. & Morzyński, M. 2010 Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22 (3), 034102.CrossRefGoogle Scholar
Tadmor, G. & Noack, B. R.2004 Dynamic estimation for reduced Galerkin models of fluid flows. The 2004 American Control Conference, Boston, MA, USA, June 30–July 2, 2004, Paper WeM18.1, pp. 0001–0006.Google Scholar
Walters, R. E., Myer, D. P. & Holt, D. J.1972 Circulation control by steady and pulsed blowing for a cambered elliptical airfoil. Tech. Rep. TR-32. West Virginia University, Aerospace Engineering.Google Scholar
Weller, J., Lombardi, E. & Iollo, A. 2009 Robust model identification of actuated vortex wakes. Physica D 238 (4), 416427.CrossRefGoogle Scholar
Wood, N. J. & Nielson, J. N.1985 Circulation control airfoils – past, present and future. AIAA Paper 85-0204.Google Scholar