Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T04:29:15.536Z Has data issue: false hasContentIssue false

Phoretic self-propulsion of helical active particles

Published online by Cambridge University Press:  01 October 2021

Ruben Poehnl
Affiliation:
Department of Mechanical Engineering, University of Hawai'i at Mānoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822, USA
William Uspal*
Affiliation:
Department of Mechanical Engineering, University of Hawai'i at Mānoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822, USA
*
Email address for correspondence: uspal@hawaii.edu

Abstract

Chemically active colloids self-propel by catalysing the decomposition of molecular ‘fuel’ available in the surrounding solution. If the various molecular species involved in the reaction have distinct interactions with the colloid surface, and if the colloid has some intrinsic asymmetry in its surface chemistry or geometry, there will be phoretic flows in an interfacial layer surrounding the particle, leading to directed motion. Most studies of chemically active colloids have focused on spherical, axisymmetric ‘Janus’ particles, which (in the bulk, and in absence of fluctuations) simply move in a straight line. For particles with a complex (non-spherical and non-axisymmetric) geometry, the dynamics can be much richer. Here, we consider chemically active helices. Via numerical calculations and slender body theory, we study how the translational and rotational velocities of the particle depend on geometry and the distribution of catalytic activity over the particle surface. We confirm the recent finding of Katsamba et al. (J. Fluid Mech., vol. 898, 2020, p. A24) that both tangential and circumferential concentration gradients contribute to the particle velocity. The relative importance of these contributions has a strong impact on the motion of the particle. We show that, by a judicious choice of the particle design parameters, one can suppress components of angular velocity that are perpendicular to the screw axis, or even select for purely ‘sideways’ translation of the helix.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J.L. 1989 Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 21, 6199.CrossRefGoogle Scholar
Aubret, A., Youssef, M., Sacanna, S. & Palacci, J. 2018 Targeted assembly and synchronization of self-spinning microgears. Nature Phys. 14, 11141118.CrossRefGoogle Scholar
Baker, R.D., Montenegro-Johnson, T., Sediako, A.D., Thomson, M.J., Sen, A., Lauga, E. & Aranson, I.S. 2019 Shape-programmed 3d printed swimming microtori for the transport of passive and active agents. Nat. Commun. 10, 4932.CrossRefGoogle ScholarPubMed
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.CrossRefGoogle ScholarPubMed
Bianchi, S., Sosa, V.C., Vizsnyiczai, G. & Di Leonardo, R. 2020 Brownian fluctuations and hydrodynamics of a microhelix near a solid wall. Sci. Rep. 10, 4609.CrossRefGoogle Scholar
Campbell, A.I. & Ebbens, S.J. 2013 Gravitaxis in spherical Janus swimming devices. Langmuir 29, 1406614073.CrossRefGoogle ScholarPubMed
Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X.L. 2006 Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. 103, 1371213717.CrossRefGoogle ScholarPubMed
Cortez, R., Fauci, L. & Medovikov, A. 2005 The method of regularized stokeslets in three dimensions: analysis, validation, and application to helical swimming. Phys. Fluids 17, 031504.CrossRefGoogle Scholar
Ghosh, A. & Fischer, P. 2009 Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 22432245.CrossRefGoogle ScholarPubMed
Gibbs, J.G. 2020 Shape- and material-dependent self-propulsion of photocatalytic active colloids, interfacial effects, and dynamic interparticle interactions. Langmuir 36, 69386947.CrossRefGoogle ScholarPubMed
Gibbs, J.G. & Fischer, P. 2015 Active colloidal microdrills. Chem. Commun. 51, 41924195.CrossRefGoogle ScholarPubMed
Gray, J. & Handcock, G.J. 1955 The propulsion of sea-urchin spermatozoa. J. Expl Biol. 32, 802814.CrossRefGoogle Scholar
Ibrahim, Y., Golestanian, R. & Liverpool, T.B. 2018 Shape dependent phoretic propulsion of slender active particles. Phys. Rev. Fluids 3, 033101.CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M.P. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88, 062702.CrossRefGoogle Scholar
Johnson, R.E. 1980 An improved slender-body theory for stokes flow. J. Fluid Mech. 99, 411431.CrossRefGoogle Scholar
Katsamba, P., Michelin, S. & Montenegro-Johnson, T.D. 2020 Slender phoretic theory of chemically active filaments. J. Fluid Mech. 898, A24.CrossRefGoogle Scholar
Katuri, J., Uspal, W.E., Simmchen, J., Miguel-López, A. & Sánchez, S. 2018 Cross-stream migration of active particles. Sci. Adv. 4, eaao1755.CrossRefGoogle ScholarPubMed
Keller, J.B. & Rubinow, S.I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75, 705714.CrossRefGoogle Scholar
Kim, K., Guo, J., Liang, Z.X., Zhu, F.Q. & Fan, D.L. 2016 Man-made rotary nanomotors: a review of recent developments. Nanoscale 8, 1047110490.CrossRefGoogle ScholarPubMed
Kim, M. & Powers, T.R. 2004 Hydrodynamic interactions between rotating helices. Phys. Rev. E 69, 061910.CrossRefGoogle ScholarPubMed
Koens, L. & Lauga, E. 2014 The passive diffusion of Leptospira interrogans. Phys. Biol. 11, 066008.CrossRefGoogle ScholarPubMed
Koens, L. & Lauga, E. 2018 The boundary integral formulation of stokes flows includes slender-body theory. J. Fluid Mech. 850, R1.CrossRefGoogle Scholar
Lauga, E., Luzio, W.R.D., Whitesides, G.M. & Stone, H.A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400412.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Makino, M. & Doi, M. 2017 Separation of propeller-like particles by shear and electric field. Phys. Rev. Fluids 2, 064303.CrossRefGoogle Scholar
Man, Y. & Lauga, E. 2013 The wobbling-to-swimming transition of rotated helices. Phys. Fluids 25, 071904.CrossRefGoogle Scholar
Marcos, Fu, H.C., Powers, T.R. & Stocker, R. 2009 Separation of microscale chiral objects by shear flow. Phys. Rev. Lett. 102, 158103.Google Scholar
Mirzae, Y., Rubinstein, B.Y., Morozov, K.I. & Leshansky, A.M. 2020 Modeling propulsion of soft magnetic nanowires. Front. Robot. AI 7, 152.CrossRefGoogle ScholarPubMed
Palusa, M., de Graaf, J., Brown, A. & Morozov, A. 2018 Sedimentation of a rigid helix in viscous media. Phys. Rev. Fluids 3, 124301.CrossRefGoogle Scholar
Peyer, K.E., Tottori, S., Qiu, F., Zhang, L. & Nelson, B.J. 2013 Magnetic helical micromachines. Chem. Eur. J. 19, 2838.CrossRefGoogle ScholarPubMed
Piazza, F. & Grebenkov, D. 2019 Diffusion-influenced reactions on non-spherical partially absorbing axisymmetric surfaces. Phys. Chem. Chem. Phys. 21, 2589625906.CrossRefGoogle ScholarPubMed
Poon, W.C.K. 2013 From Clarkia to Escherichia and Janus: the physics of natural and synthetic active colloids. Proc. Intl Sch. Phys. Enrico Fermi 184, 317386.Google Scholar
Popescu, M.N., Uspal, W.E., Bechinger, C. & Fischer, P. 2018 a Chemotaxis of active Janus nanoparticles. Nano Lett. 18, 53455349.CrossRefGoogle ScholarPubMed
Popescu, M.N., Uspal, W.E., Eskandari, Z., Tasinkevych, M. & Dietrich, S. 2018 b Effective squirmer models for self-phoretic chemically active spherical colloids. Eur. Phys. J. E 41, 145.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.CrossRefGoogle Scholar
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.CrossRefGoogle Scholar
Purcell, E.M. 1997 The efficiency of propulsion by a rotating flagellum. Proc. Natl Acad. Sci. 94, 1130711311.CrossRefGoogle ScholarPubMed
Reichert, M. & Stark, H. 2005 Synchronization of rotating helices by hydrodynamic interactions. Eur. Phys. J. E 17, 493500.CrossRefGoogle ScholarPubMed
Rodenborn, B., Chen, C.-H., Swinney, H.L., Liu, B. & Zhang, H.P. 2013 Propulsion of microorganisms by a helical flagellum. Proc. Natl Acad. Sci. 110, E338E347.CrossRefGoogle ScholarPubMed
du Roure, O., Lindner, A., Nazockdast, E.N. & Shelley, M.J. 2019 Dynamics of flexible fibers in viscous flows and fluids. Ann. Rev. Fluid Mech. 51, 539572.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2015 Osmotic self-propulsion of slender particles. Phys. Fluids 27, 031701.CrossRefGoogle Scholar
Uspal, W.E. 2019 a The boundary element method for fluctuating active colloids. In Non-Equilibrium Particle Dynamics (ed. A.S. Kim). InTechOpen.Google Scholar
Uspal, W.E. 2019 b Theory of light-activated catalytic Janus particles. J. Chem. Phys. 150, 114903.CrossRefGoogle ScholarPubMed
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt. 11, 434438.CrossRefGoogle Scholar
Wittkowski, R. & Löwen, H. 2012 Self-propelled brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers. Phys. Rev. E 85, 021406.CrossRefGoogle ScholarPubMed
Yariv, E. 2020 Self-diffusiophoresis of slender catalytic colloids. Langmuir 36, 69036915.CrossRefGoogle ScholarPubMed
Yu, Y.R., Fu, F.F., Shang, L.R., Cheng, Y., Gu, Z.Z. & Zhao, Y.J. 2017 Bioinspired helical microfibers from microfluidics. Adv. Mater. 29, 1605765.CrossRefGoogle ScholarPubMed