Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T19:36:37.079Z Has data issue: false hasContentIssue false

Modifications to the wake of a wire across Poiseuille flow due to a unipolar space charge

Published online by Cambridge University Press:  21 April 2006

F. M. J. Mccluskey
Affiliation:
Laboratoire d'Electrostatique et de Matériaux Diélectriques
Laboratory also associated with the Scientific, Technological and Medical University of Grenoble (USTMG).
, CNRS, 166 X-38042 Grenoble Cedex, France
P. Atten
Affiliation:
Laboratoire d'Electrostatique et de Matériaux Diélectriques
Laboratory also associated with the Scientific, Technological and Medical University of Grenoble (USTMG).
, CNRS, 166 X-38042 Grenoble Cedex, France

Abstract

A wake behind a wire in a developed Poiseuille flow is examined with and without ionic injection into the liquid by the wire. Mean electric fields of up to 50 kV/cm between the wire and two plate electrodes on either side were used to bring about this injection. The resulting Coulomb force can modify the wake flow in two ways. When this force is weak, the injected ions are transported downstream in a thin charged wake, the only effect being that the deficit velocity is compensated over shorter distances. Once the Coulomb force is strong, there are two charged and turbulent plume-like structures going from the wire to the plates. These are perpendicular to the plates for zero forced flow and are pushed downstream to smaller angles as the forced flow is increased. The wake in this case is not present. Different experimental laws are given to characterize the different regimes and the transition between them.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F. 1968 Further experiments on steady separated flows past bluff objects. J. Fluid Mech. 34, 2548.Google Scholar
Arya, S. P. S.1975 Buoyancy effects in a horizontal flat plate boundary layer. J. Fluid Mech. 68, 321343.Google Scholar
Atten, P.1975 Stabilité électrohydrodynamique des liquides de faible conductivité. J. Méc. 14, 461495.Google Scholar
Atten, P. & Haïdara, M.1985 Electrical conduction and EHD motion of dielectric liquids in a knife-plane electrode assembly. IEEE Trans. Elect. Insul. EI-20, 187198.Google Scholar
Atten, P. & Honda, T.1982 The electroviscous effect and its explanation. J. Electrostatics 11, 225245.Google Scholar
Atten, P. & Lacroix, J. C.1979 Non-linear hydrodynamic stability of liquids subjected to unipolar injection. J. Méc. 18, 469510.Google Scholar
Atten, P., McCluskey, F. M. J. & Lahjomri, A. C.1987 The electrohydrodynamic origin of turbulence in electrostatic precipitators. IEEE Trans. Indust. Appl. IA-23, 705711.Google Scholar
Atten, P. & Malraison, B.1981 Superposition d'une injection unipolaire et d'un écoulement de Poiseuille. In Symmetries and Broken Symmetries in Condensed Matter Physics (ed. N. Boccara), pp. 503515. IDSET Paris.
Atten, P. & Moreau, R.1972 Stabilité électrohydrodynamique des liquides isolants soumis à une injection unipolaire. J. Méc. 11, 471520.Google Scholar
Bajura, R. A. & Szewezyk, A. A.1970 Experimental investigation of a laminar two-dimensional plane wall-jet. Phys. Fluids 13, 16531664.Google Scholar
Camichel, C., Escande, L. & Ricaud, M.1925 Sur l’écoulement des fluides visqueux autour d'un obstacle. C. R. Acad. Sci. Paris 180, 15571559.Google Scholar
Davis, R. W., Moore, E. F. & Purtell, L. P.1984 A numerical—experimental study of confined flow around rectangular cylinders. Phys. Fluids 27, 4659.Google Scholar
Denat, A., Gosse, B. & Gosse, J. P.1979 Ion injections in hydrocarbons. J. Electrostatics 7, 205225.Google Scholar
Dupin, P. & Teissié-Solier, M. 1928 Les tourbillons alternés de Bénard-Kármán. Rev. Gén. Electr. XXIV, 5360.Google Scholar
FÉLici, N.1969 Phénomènes hydro- et aérodynamiques dans la conduction des diélectriques fluides. Rev. Gén. Electr. 78, 717734.Google Scholar
FÉLici, N.1971a D.C. conduction in dielectric liquids. Part. I. A survey of recent progress. Direct Curr. 2, 9099.Google Scholar
FÉLici, N.1971b D.C. conduction in dielectric liquids. Part II. Electrohydrodynamic phenomena. Direct Curr. 2, 147165.Google Scholar
Glauert, M. B.1956 The wall jet. J. Fluid Mech. 1, 625643.Google Scholar
Grove, A. S., Shair, F. H., Petersen, E. E. & Acrivos, A. 1964 An experimental investigation of the steady separated flow past a cylinder. J. Fluid Mech. 19, 6085.Google Scholar
HaÏDara, M. & Atten, P.1985 Role of E.H.D. motion in the electrical conduction of liquids in a blade—plane geometry. IEEE Trans. Indust. Appl. IA-21, 709714.Google Scholar
Honda, T.1976 Etude et interpretation de l'effet électrovisqueux dans les liquides diélectriques isotropes. Ph.D. thesis, Grenoble.
Hopfinger, E. J. & Gosse, J. P.1971 Charge transport by self-generated turbulence in insulating liquids submitted to unipolar injection. Phys. Fluids 14, 16711682.Google Scholar
Hunter, R. J.1981 Zeta Potential in Colloid Science: Principles and Applications, Chap. 3. Academic.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulence boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Lacroix, J. C., Atten, P. & Hopfinger, E. J.1975 Electroconvection in a dielectric liquid layer subjected to unipolar injection. J. Fluid Mech. 69, 539563.Google Scholar
Mccluskey, F. M. J.1985 Interaction entre un écoulement forcé et l’électroconvection due à une charge d'espace injectée par un fil entre deux plans parallèles. Ph.D. thesis, Grenoble.
Mccluskey, F. M. J. & Atten, P.1984 Entrainment of an injected unipolar space charge by a forced flow in a rectangular channel. J. Electrostatics 15, 329342.Google Scholar
Mccluskey, F. M. J. & Atten, P.1985 Velocity profiles in the injection zone of an EHD generator and efficiency considerations. IEEE Trans. Electr. Insul. EI-20, 405412.Google Scholar
Nishioka, M. & Sato, H.1974 Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds number. J. Fluid Mech. 65, 97112.Google Scholar
Okamoto, T. & Takeushi, M.1975 Effect of side walls of wind-tunnel on flow around two-dimensional cylinder and its wake. Bull. JSME 18, 10111017.Google Scholar
Rajaratnam, N.1976 Turbulent Jets. Elsevier Press.
Richter, A. & Naudascher, E.1976 Fluctuating forces on a rigid circular cylinder in confined flow. J. Fluid Mech. 78, 561576.Google Scholar
Schneider, J. M. & Watson, P. K.1970 Electrohydrodynamic stability of space charge limited currents in dielectric liquids. 1. Theoretical study. Phys. Fluids 13, 19481954.Google Scholar
Schwarz, W. H. & Cosart, W. P.1961 The two-dimensional turbulent wall jet. J. Fluid Mech. 10, 481495.Google Scholar
Shair, F. H., Grove, A. A., Petersen, E. E. & Acrivos, A. 1963 The effect of confining walls on the stability of the steady wake behind a circular cylinder. J. Fluid Mech. 17, 546550.Google Scholar
Taneda, S.1956 Experimental investigation of the wakes behind cylinders and plates at low Reynolds number. J. Phys. Soc. Japan 11, 302307.Google Scholar
ThÉOleyre, S. & Tobazéon, R.1983 Conduction électrique aux champs très intenses dans le carbonate de propylène. C.R. Acad. Sci. Paris 296, II, 241244.Google Scholar
Thom, A.1933 The flow past circular cylinders at low speeds. Proc. R. Soc. Lond. A 141, 651669.Google Scholar
TobazÉOn, R.1966 Etude du transfert convectif de charges électriques par un jet de liquide isolant et application à la génération de tensions élevées. Ph.D. thesis, Grenoble.
Turner, J. S.1979 Buoyancy Effects in Liquids. Cambridge University Press.
Watson, P. K., Schneider, J. M. & Till, H. R.1970 Electrohydrodynamic stability of space charge limited currents in dielectric liquids. 2. Experimental study. Phys. Fluids 13, 19551961.Google Scholar
West, G. S. & Apelt, C. J.1982 The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds number between 104 and 106. J. Fluid Mech. 114, 361377.Google Scholar