Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T18:05:43.109Z Has data issue: false hasContentIssue false

Internal-wave interactions in the induced-diffusion approximation

Published online by Cambridge University Press:  20 April 2006

James D. Meiss
Affiliation:
Department of Physics, University of California, Berkeley Present address: Institute for Fusion Studies, University of Texas, Austin, Texas
Kenneth M. Watson
Affiliation:
Center for Studies of Nonlinear Dynamics, La Jolla Institute, P.O. Box 1434, La Jolla, CA 92038 Present Address: Marine Physical Laboratory of the Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093

Abstract

Dynamical equations for the interaction of high-wavenumber, high-frequency internal waves with a prescribed, linear, large-scale internal-wave field are obtained from the Boussinesq–Euler equations. The relationship of these ‘induced-diffusion’ interactions to the Taylor–Goldstein equation is discussed. Exact equations are derived in the induced-diffusion limit of McComas & Bretherton (1977) for the evolution of the first and second moments of the small-scale flow when the large-scale flow is assumed random. Estimates of corrections to the induced-diffusion approximation for the Garrett–Munk internal-wave model indicate the domain of applicability of these equations. Computations of the autocorrelation function and action transport in wavenumber and physical space are presented. Severe limitations are found on the applicability of two-time perturbation theory and the resonant-interaction approximation. The high transfer rates found by McComas & Bretherton in the induceddiffusion regime are reduced significantly in the present calculations.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Booker, J. R. & Bretherton, F. P. 1967 J. Fluid Mech. 27, 513.
Bretherton, F. P. 1966 Quart. J. R. Met. Soc. 92, 466.
Cox, C. S. & Johnson, C. L. 1979 Inter-relations of microprocesses, internal waves, and large scale ocean features (unpublished manuscript).
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.
Garrett, C. J. R. & Munk, W. H. 1979 Ann. Rev. Fluid Mech. 11, 339.
Gregg, M. C. 1977 J. Phys. Oceanog. 7, 33.
Hasselmann, K. 1966 Rev. Geophys. Space Phys. 4, 1.
Hasselmann, K. 1967 Proc. R. Soc. Lond. A 299, 77.
Holloway, G. 1979 Geophys. Astrophys. Fluid Dyn. 11, 271.
Holloway, G. 1980 J. Phys. Oceanog. 10, 906.
Holloway, G. & Hendershott, M. C. 1977 J. Fluid Mech. 82, 747.
Mccomas, C. H. 1977 J. Phys. Ocean 7, 836.
Mccomas, C. H. & Bretherton, F. P. 1977 J. Geophys. Res. 82, 1397.
Meiss, J. D., Pomphrey, N. & Watson, K. M. 1979 Proc. Nat. Acad. Sci. U.S.A. 76, 2109.
Müller, P. 1976 J. Fluid Mech. 77, 789.
Munk, W. H. 1981 In Evolution of Physical Oceanography (ed. B. A. Warren & C. Wunsch), p. 264. MIT Press.
Olbers, D. J. 1976 J. Fluid Mech. 74, 375.
Phillips, O. M. 1977 The Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press.
Pinkel, R. 1975 J. Geophys. Res. 80, 3892.
Pomphrey, N. 1981 In Nonlinear Properties of Internal Waves (ed. B. J. West), p. 103. American Institute of Physics.
Pomphrey, N., Meiss, J. D. & Watson, M. K. 1980 J. Geophys. Res. 85, 1085.
Van Kampen, N. G. 1974a Physica 74, 215.
Van Kampen, N. G. 1974b Physica 74, 239.
Watson, K. M. 1981 In Nonlinear Properties of Internal Waves (ed. B. J. West), p. 193. American Institute of Physics.
Watson, K. M. & West, B. J. 1975 J. Fluid Mech. 70, 815.
Wigner, E. P. 1932 Phys. Rev. 40, 749.
Yau, P. 1981 Ph.D. thesis, Spectral transfer of the nonlinear internal wave field of the Upper Ocean. University of California, Berkeley.