Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:22:48.822Z Has data issue: false hasContentIssue false

Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers

Published online by Cambridge University Press:  13 June 2018

Loïc Tadrist*
Affiliation:
Microfluidics Lab, Department of Mechanical and Aerospace Engineering, University of Liege, Allée de la découverte 9, 4000 Liège, Belgium
Jeong-Bo Shim
Affiliation:
IPNAS, CESAM research unit, University of Liege, Allee du 6 Août 15, 4000 Liège, Belgium
Tristan Gilet
Affiliation:
Microfluidics Lab, Department of Mechanical and Aerospace Engineering, University of Liege, Allée de la découverte 9, 4000 Liège, Belgium
Peter Schlagheck
Affiliation:
IPNAS, CESAM research unit, University of Liege, Allee du 6 Août 15, 4000 Liège, Belgium
*
Email address for correspondence: Loic.tadrist@uliege.be

Abstract

A walker is a fluid entity comprising a bouncing droplet coupled to the waves that it generates at the surface of a vibrated bath. Thanks to this coupling, walkers exhibit a series of wave–particle features formerly thought to be exclusive to the quantum realm. In this paper, we derive a model of the Faraday surface waves generated by an impact upon a vertically vibrated liquid surface. We then particularise this theoretical framework to the case of forcing slightly below the Faraday instability threshold. Among others, this theory yields a rationale for the cosine dependence of the wave amplitude to the phase shift between impact and forcing, as well as the characteristic time scale and length scale of viscous damping. The theory is validated with experiments of bead impact on a vibrated bath. We finally discuss implications of these results for the analogy between walkers and quantum particles.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., Levinsen, M. T. & Bohr, T. 2015 Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92 (1), 013006.Google ScholarPubMed
Bechhoefer, J., Ego, V., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Beyer, J. & Friedrich, R. 1995 Faraday instability: linear analysis for viscous fluids. Phys. Rev. E 51 (2), 1162.Google Scholar
Blanchette, F. 2016 Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28, 032104.Google Scholar
Borghesi, C., Moukhtar, J., Labousse, M., Eddi, A., Fort, E. & Couder, Y. 2014 Interaction of two walkers: wave-mediated energy and force. Phys. Rev. E 90 (6), 063017.Google Scholar
de Broglie, L. 1987 Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis de Broglie 12 (4), 123.Google Scholar
Bush, J. W. M. 2015 Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269292.Google Scholar
Bush, J. W. M., Oza, A. U. & Moláček, J. 2014 The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7.CrossRefGoogle Scholar
Carmigniani, R., Lapointe, S., Symon, S. & McKeon, B. J. 2014 Influence of a local change of depth on the behavior of walking oil drops. Exp. Therm. Fluid Sci. 54, 237246.CrossRefGoogle Scholar
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97 (15), 154101.Google Scholar
Couder, Y. & Fort, E. 2012 Probabilities and trajectories in a classical wave-particle duality. J. Phys.: Conf. Ser. 361, 012001.Google Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005a From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.Google Scholar
Couder, Y., Protiere, S., Fort, E. & Boudaoud, A. 2005b Walking and orbiting droplets. Nature 437, 208.CrossRefGoogle ScholarPubMed
Damiano, A. P., Brun, P.-T., Harris, D. M., Galeano-Rios, C. A. & Bush, J. W. M. 2016 Surface topography measurements of the bouncing droplet experiment. Exp. Fluids 57 (10), 163.Google Scholar
Dubertrand, R., Hubert, M., Schlagheck, P., Vandewalle, N., Bastin, T. & Martin, J. 2016 Scattering theory of walking droplets in the presence of obstacles. New J. Phys. 18, 113037.Google Scholar
Durey, M. & Milewski, P. A. 2017 Faraday wave-droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.Google Scholar
Eddi, A2011 Marcheurs, dualité onde-particule et mémoire de chemin. PhD thesis, Université Paris-Diderot-Paris VII.Google Scholar
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102 (24), 240401.Google Scholar
Eddi, A., Moukhtar, J., Perrard, S., Fort, E. & Couder, Y. 2012 Level splitting at macroscopic scale. Phys. Rev. Lett. 108 (26), 264503.Google Scholar
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433463.Google Scholar
Faraday, M. 1831 On the forms and states assumed by fluids in contact with vibrating elastic surface. Phil. Tran. R. Soc. Lond. 121, 319346.Google Scholar
Filoux, B., Hubert, M. & Vandewalle, N. 2015 Strings of droplets propelled by coherent waves. Phys. Rev. E 92, 041004(R).Google Scholar
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107, 1751517520.Google Scholar
Gilet, T. 2014 Dynamics and statistics of wave-particle interactions in a confined geometry. Phys. Rev. E 90, 052917.Google Scholar
Gilet, T. 2016 Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys. Rev. E 93, 042202.Google Scholar
Gilet, T., Terwagne, D., Vandewalle, N. & Dorbolo, S. 2008 Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett. 100, 167802.Google Scholar
Gopinath, A. & Koch, D. L. 2001 Dynamics of droplet rebound from a weakly deformable gas–liquid interface. Phys. Fluids 13 (12), 35263532.Google Scholar
Harris, D. M. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.CrossRefGoogle Scholar
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001 (R).Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016 Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93, 033122.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16, 113027.Google Scholar
Lioubashevski, O., Arbell, H. & Fineberg, J. 1996 Dissipative solitary states in driven surface waves. Phys. Rev. Lett. 76 (21), 39593962.CrossRefGoogle ScholarPubMed
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.Google Scholar
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46 (6), 10211036.CrossRefGoogle Scholar
Moláček, J. & Bush, J. W. M. 2012 A quasi-static model of drop impact. Phys. Fluids 24 (12), 127103.CrossRefGoogle Scholar
Molacek, J. & Bush, J. W. M. 2013 Drop bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.Google Scholar
Moláček, J. & Bush, J. W. M. 2013 Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.CrossRefGoogle Scholar
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knorr, K. 1997 Analytic stability theory for Faraday waves and the observation of the harmonic surface response. Phys. Rev. Lett. 78 (12), 23572360.CrossRefGoogle Scholar
Nachbin, A., Milewski, P. A. & Bush, J. W. M. 2017 Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2, 034801.CrossRefGoogle Scholar
Nguyem Thu Lam, K. D. & Caps, H. 2011 Effect of a capillary meniscus on the Faraday instability threshold. Eur. Phys. J. E 34, 112.Google Scholar
Oza, A. U., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.CrossRefGoogle Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.Google Scholar
Oza, A. U., Siéfert, E., Harris, D. M., Molác̆ek, J. & Bush, J. W. M. 2017 Orbiting pairs of walking droplets: dynamics and stability. Phys. Rev. Fluids 2, 053601.Google Scholar
Oza, A. U., Wind-Willassen, O., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Phys. Fluids 26, 082101.Google Scholar
Perrard, S., Labousse, M., Fort, E. & Couder, Y. 2014a Chaos driven by interfering memory. Phys. Rev. Lett. 113, 104101.Google Scholar
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014b Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219.Google Scholar
Protière, S., Bohn, S. & Couder, Y. 2008 Exotic orbits of two interacting wave sources. Phys. Rev. E 78, 036204.Google Scholar
Protiere, S., Boudaoud, A. & Couder, Y. 2006 Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85108.Google Scholar
Protiere, S., Couder, Y., Fort, E. & Boudaoud, A. 2005 The self-organization of capillary wave sources. J. Phys.: Condens. Matter 17 (45), S3529.Google Scholar
Pucci, G., Harris, D. M., Faria, L. M. & Bush, J. W. M. 2018 Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 11361156.Google Scholar
Pucci, G., Sáenz, P. J., Faria, L. M. & Bush, J. W. M. 2016 Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3.Google Scholar
Sampara, N. & Gilet, T. 2016 Two-frequency forcing of droplet rebounds on a liquid bath. Phys. Rev. E 94, 053112.Google Scholar
Tambasco, L. D., Harris, D. M., Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2016 The onset of chaos in orbital pilot-wave dynamics. Chaos 26, 103107.CrossRefGoogle ScholarPubMed
Wagner, C., Müller, H.-W. & Knorr, K. 2003 Pattern formation at the bicritical point of the Faraday instability. Phys. Rev. E 68, 066204.Google Scholar