Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T22:05:46.720Z Has data issue: false hasContentIssue false

Development of coherent structures in concentrated suspensions of swimming model micro-organisms

Published online by Cambridge University Press:  25 November 2008

TAKUJI ISHIKAWA
Affiliation:
Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
J. T. LOCSEI
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
T. J. PEDLEY
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

A swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity and referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre, and the effects of inertia and Brownian motion are neglected. The well-known Stokesian dynamics method is modified in order to simulate squirmer motions in a concentrated suspension. The movement of 216 identical squirmers in a concentrated suspension without any imposed flow is simulated in a cubic domain with periodic boundary conditions, and the coherent structures within the suspension are investigated. The results show that (a) a weak aggregation of cells appears as a result of the hydrodynamic interaction between cells; (b) the cells generate collective motions by the hydrodynamic interaction between themselves; and (c) the range and duration of the collective motions depend on the volume fraction and the squirmers' stresslet strengths. These tendencies show good qualitative agreement with previous experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acrivos, A. 1995 Bingham award lecture 1994: shear-induced particle diffusion in concentrated suspension of noncolloidal particles. J. Rheol. 39, 813825.CrossRefGoogle Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Beenakker, C. W. J. 1986 Ewald sum of the Rotne–Prager tensor. J. Chem. Phys. 85, 15811582.CrossRefGoogle Scholar
Bees, M. A. & Hill, N. A. 1998 Linear bioconvection in a suspension of randomly-swimming, gyrotactic micro-organisms. Phys. Fluids 10, 18641881.CrossRefGoogle Scholar
Blake, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105129.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.CrossRefGoogle Scholar
Brady, J. F., Phillips, R. J., Lester, J. C. & Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech. 195, 257280.CrossRefGoogle Scholar
Childress, S., Levandowsky, M. & Spiegel, E. A. 1975 Pattern formation in a suspension of swimming micro-organisms: equations and stability theory. J. Fluid Mech. 63, 591613.CrossRefGoogle Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. 2004 Self-Concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103.CrossRefGoogle ScholarPubMed
Durlofsky, L., Brady, J. F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180, 2149.CrossRefGoogle Scholar
Felderhof, B. U. & Jones, R. B. 2004 Small-amplitude swimming of a sphere. Physica A 202, 119144.CrossRefGoogle Scholar
Guell, D. C., Brenner, H., Frankel, R. B. & Hartman, H. 1988 Hydrodynamic forces and band formation in swimming magnetotactic bacteria. J. Theor. Biol. 135, 525542.CrossRefGoogle Scholar
Hernandes-Ortiz, J. P., Stoltz, C. G. & Graham, M. D. 2005 Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501.CrossRefGoogle Scholar
Hillesdon, A. J., Pedley, T. J. & Kessler, J. O. 1995 The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57, 299344.CrossRefGoogle Scholar
Ishikawa, T. & Hota, M. 2006 Interaction of two swimming Paramecia. J. Exp. Biol. 209, 44524463.CrossRefGoogle ScholarPubMed
Ishikawa, T. & Pedley, T. J. 2007 a The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399435.CrossRefGoogle Scholar
Ishikawa, T. & Pedley, T. J. 2007 b Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588, 437462.CrossRefGoogle Scholar
Ishikawa, T. & Pedley, T. J. 2008 Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100, 088103.CrossRefGoogle ScholarPubMed
Ishikawa, T., Sekiya, G., Imai, Y. & Yamaguchi, T. 2007 Hydrodynamic interaction between two swimming bacteria. Biophys. J. 93, 22172225.CrossRefGoogle ScholarPubMed
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Jiang, H., Osborn, T. R. & Meneveau, C. 2002 Hydrodynamic interaction between two copepods: a numerical study. J. Plank. Res. 24, 235253.CrossRefGoogle Scholar
Kessler, J. O. 1986 The external dynamics of swimming micro-organisms. In Progress in Phycological Research (ed. Round, F. E. & Chapman, D. J.; vol. 4), pp. 257307. Bristol: Biopress.Google Scholar
Kessler, J. O., Hoelzer, M. A., Pedley, T. J. & Hill, N. A. 1994 Functional pattern of swimming bacteria. In Mechanics and Physiology of Animal Swimming (ed. Maddock, L., Bone, Q. & Rayner, J. M. V.), pp. 312. Cambridge University Press.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 1992 Microhydrodynamics: Principles and Selected Applications. Butterworth Heinemann.Google Scholar
Ladd, A. J. C. 1994 a Numerical simulations of particlate suspensions via a discretized Boltzmann equation: part 1; theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Ladd, A. J. C. 1994 b Numerical simulations of particlate suspensions via a discretized Boltzmann equation: part 2; numerical results. J. Fluid Mech. 271, 311339.CrossRefGoogle Scholar
Ladd, A. J. C. 1997 Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491499.CrossRefGoogle Scholar
Lega, J. & Passot, T. 2003 Hydrodynamics of bacterial colonies. Phys. Rev. E 67, 031906.Google ScholarPubMed
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Comm. Pure Appl. Maths 5, 109118.CrossRefGoogle Scholar
Loewenberg, M. & Hinch, E. J. 1996 Numerical simulations of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.CrossRefGoogle Scholar
Magar, V., Goto, T. & Pedley, T. J. 2003 Nutrient uptake by a self-propelled steady squirmer. Q. J. Mech. Appl. Maths 56, 6591.CrossRefGoogle Scholar
Magar, V. & Pedley, T. J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 539, 93112.CrossRefGoogle Scholar
McQuarrie, D. A. 1976 Statistical Mechanics (Harper's chemistry series). Harper and Row.Google Scholar
Mehandia, V. & Nott, P. 2007 The collective dynamics of self-propelled particles. J. Fluid Mech. 595, 239264.CrossRefGoogle Scholar
Mendelson, N. H., Bourque, A., Wilkening, K., Anderson, K. R. & Watkins, J. C. 1999 Organised cell swimming motions in Bacillus subtilis colonies: patterns of short-lived whirls and jets. J. Bacteriol. 180, 600609.CrossRefGoogle Scholar
Metcalfe, A. M. & Pedley, T. J. 2001 Falling plumes in bacterial bioconvection. J. Fluid Mech. 445, 121149.CrossRefGoogle Scholar
Nasseri, S. & Phan-Thien, N. 1997 Hydrodynamic interaction between two nearby swimming micromachines. Comp. Mech. 20, 551559.CrossRefGoogle Scholar
Nunan, K. C. & Keller, J. B. 1984 Effective viscosity of a periodic suspension. J. Fluid Mech. 142, 269287.CrossRefGoogle Scholar
Pedley, T. J. & Kessler, J. O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155182.CrossRefGoogle ScholarPubMed
Pitta, T. P. & Berg, H. C. 1995 Self-electrophoresis is not the mechanism for motility in swimming cynobacteria. J. Bacteriol. 177, 57015703.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow, chapter 4. Cambridge University Press.CrossRefGoogle Scholar
Ramia, M., Tullock, D. L. & Phan-Thien, N. 1993 The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755778.CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M. J. 2007 Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102.CrossRefGoogle ScholarPubMed
Sangani, A. S. & Mo, G. 1996 An O(N) algorithm for Stokes and Laplace interactions of particles. Phys. Fluids 8, 19902010.CrossRefGoogle Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. A 77, 41024104.CrossRefGoogle ScholarPubMed
Toner, J., Tu, Y. & Ramaswamy, S. 2005 Hydrodynamics and phases of flocks. Ann. Phys. A 318, 170244.CrossRefGoogle Scholar
Trokhymchuk, A., Nezbeda, I., Jirsák, J. & Henderson, D.Hard-sphere radial distribution function again. J. Chem. Phys. 123, 024501024510.CrossRefGoogle Scholar
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. 1995 Novel type of phase transition in a system of seif-driven particles. Phys. Rev. Lett. 75, 12261229.CrossRefGoogle Scholar
Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W. & Watson, S. W. 1985 A cyanobacterium capable of swimming motility. Science 230, 7476.CrossRefGoogle ScholarPubMed
Zinchenko, A. Z. & Davis, R. H. 2000 An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comp. Phys. 157, 539587.CrossRefGoogle Scholar
Zinchenko, A. Z. & Davis, R. H. 2002 Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech. 455, 2162.CrossRefGoogle Scholar